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This paper concerns the microscopic dynamical description of competing meta-
stable states. We study, at infinite volume and very low temperature, metasta-
bility and nucleation for kinetic Blume–Capel model: a ferromagnetic lattice
model with spins taking three possible values: −1, 0, 1. In a previous paper
([MO]) we considered a simplified, irreversible, nucleation-growth model; in the
present paper we analyze the full Blume–Capel model. We choose a region U of
the thermodynamic parameters such that, everywhere in U: −1 (all minuses)
corresponds to the highest (in energy) metastable state, 0 (all zeroes) corre-
sponds to an intermediate metastable state and +1 (all pluses) corresponds to
the stable state. We start from −1 and look at a local observable. Like in
[MO], we find that, when crossing a special line in U, there is a change in the
mechanism of transition towards the stable state+1. We pass from a situation:

1. where the intermediate phase 0 is really observable before the final tran-
sition, with a permanence in 0 typically much longer than the first hitting time
to 0; to the situation:

2. where 0 is not observable since the typical permanence in 0 is much
shorter than the first hitting time to 0 and, moreover, large growing 0-droplets
are almost full of+1 in their interior so that there are only relatively thin layers
of zeroes between+1 and −1.
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1. INTRODUCTION

In this paper we analyze metastability and nucleation at infinite
volume and very low temperature, in the framework of the dynamical
Blume–Capel model in two dimensions.

The Blume–Capel model describes a ferromagnetic lattice spin system
where the single spin variable can take three possible values: −1, 0,+1.

The formal hamiltonian is given by:

H(s)= C
Ox, yP
(s(x)−s(y))2−l C

x
s(x)2−h C

x
s(x) (1.1)

where l and h are two real parameters, having the meaning of the chemical
potential and the external magnetic field, respectively and Ox, yP denotes a
generic pair of nearest neighbor sites in Z2.

In a previous paper; [MO], we considered a simplified version given
by an irreversible, nucleation-and-growth model similar to that introduced
by Dehghanpour and Schonmann in [DSch1] as a simplified version of
stochastic Ising model.

We refer to [MO] for:

1. A general introduction to metastability.

2. A discussion of ‘‘competing metastable states.’’

3. A comparison between the finite volume and infinite volume meta-
stable behavior at low temperature.

In the present paper we extend the results of [MO] to the full Blume–
Capel model.

Our setup will correspond to the one considered in [DSch2] in the
case of stochastic Ising model: an infinite volume system with given l, h in
the limit of zero temperature.

In [CiO] metastability and nucleation were studied for the two-
dimensional Blume–Capel model in a different setup: the so-called Freidlin–
Wentzell asymptotic regime: system enclosed in a finite torus L, with given
l, h, in the limit of zero temperature. The interesting region of parameters
that was analyzed in [CiO] is

0 < | l | < h (1.2)

Let −1, 0 and +1 denote the configurations with all spins equal to
−1, 0, +1, respectively. It is easy to see that for small enough l and h,
these three configurations are local minima for the energy.
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In the whole region (1.2) we have (in any finite volume):

H(−1) > H(0) > H(+1)

In other words −1 and 0 are metastable whereas +1 is stable. The main
question that arises is the following: when starting from the highest meta-
stable configuration −1, whether or not the system reaches the interme-
diate metastable configuration 0 before relaxing to the stable configuration
+1.

In [CiO] the answer was found in the Freidlin–Wentzell scenario. It
has been shown, in [CiO], that there is a change in the mechanism of
transition from −1 to +1 when crossing the line h=2l > 0 in the h, l
plane. On the right side of this line (h < 2l) the transition is ‘‘direct’’ i.e.,
the system goes to +1 via the formation of a special critical droplet: a
squared ‘‘picture frame’’ with suitably large size, made by a square of
pluses encircled by a unit layer of zeroes in a sea of minuses. It is easy to
see that a direct interface between minus and plus is unstable in our region
of parameters. This explains the persistence of a thin layer of zeroes
between the pluses and the minuses. In the other region (h > 2l) the tran-
sition is ‘‘indirect’’ in the sense that the system first reaches the 0 configu-
ration via the formation of a supercritical squared droplet of zeroes in a sea
of minuses. Subsequently, via the formation of a supercritical squared
droplet of pluses in a sea of zeroes, the system is driven to the final stable
state +1. In this latter region (h > 2l) the two transitions are ‘‘Ising-like’’
whereas in the former region (h < 2l) the mechanism of transition and in
particular the associated interface dynamics are much more complicated.

It is natural to pose the problem of the behavior of the kinetic two-
dimensional Blume–Capel model in infinite volume and, in particular, in
the Dehghanpour–Schonmann regime (b Q. for small but fixed l and h
in infinite volume). In particular it is natural to pose the following ques-
tion: does the sort of ‘‘dynamical phase transition’’ that has been detected
in finite volume persists in infinite volume? If yes in which form? One easily
realizes that it is reasonable to expect a change in the mechanism of transi-
tion over the line l=0. Indeed, when passing from l < 0 to l > 0 two
simultaneous effects take place:

1. The local energy barrier, strictly related to the nucleation rate,
between −1 and 0 becomes higher than the local energy barrier between 0
and+1.

2. The speed of growth of a supercritical droplet of pluses in a sea of
zeroes becomes larger than the speed of growth of a supercritical droplet of
zeroes in a sea of minuses.
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In other words one expects that, starting from −1 and looking at an
observable localized close to the origin, for l < 0 one first sees a large
droplet of zeroes coming from a large distance and after a much larger time
one observes the arrival of a large droplet of pluses; on the contrary, for
l > 0 the time of the first arrival of the zero phase near the origin is much
longer than the time interval needed for the subsequent arrival of the
pluses.

We indeed prove (Theorem 1) a change in the asymptotic behavior of
the ratio between the time of first appearance, say, of a stable non-minus
situation at the origin, denoted by y À , and the time interval, denoted by
y À+, between y À and the first appearance of the + phase at the origin.
When y À+° y À , we also give information on the shape of large droplets:
we show, in Theorem 2, that large droplets of zeroes tend to be invaded by
pluses in their interior so that, asymptotically, they become completely full
of pluses with only a relatively thin layer of non-minuses (typically zeroes)
between the internal pluses and the sea of minuses.

The rest of the paper is organized as follows: in Section 2 we give
definitions and preliminary results. In Section 3 we give the main results. In
particular we state Proposition 3 concerning upper and lower estimates for
y À , y À+ from which Theorem 1 immediately follows. In Section 4 we
extend the results about exit times for Metropolis Markov chains to study
the exit probability at ‘‘small times.’’ In Section 5, we carry out a prelimi-
nary analysis of the dynamics. In Section 6 we analyze the first metastable
regime and prove Proposition 3,a). In section 7 we analyze the relaxation
to non-minuses and prove Proposition 3,b). In Section 8 and 9 we prove
Proposition 3,c) and Proposition 3,d), respectively. In Section 10 we prove
Theorem 2.

2. DEFINITIONS AND PRELIMINARY RESULTS

2.1. Basic Notation

By

NaM and KaL (2.1)

we denote the largest integer smaller than or equal to the real number a
and the smallest integer larger than or equal to a, respectively.

For a ¥ R, we denote by

[a]+ :=max {a, 0} (2.2)

the positive part of a.
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For x ¥ Z2,

||x|| :=max
i=1, 2

| xi | (2.3)

||x||1 := | xi | + | x2 | (2.4)

For B … Z2,

diam(B) := sup
x, y ¥ B

||x−y|| (2.5)

Given a subset A of a space W where a notion of neighbor is given, we
define the following boundary sets:

“A — “+A :={t ¥ W0A : ,g ¥ A s.t. t and g are neighbors} (2.6)

“
−A :=“+Ac (2.7)

where Ac :=W0A.

2.2. The Model

The configuration space is S :={−1, 0, 1}Z
2
; the formal hamiltonian is

given in (1.1). Given a configuration s ¥ S, s(x) ¥ {−1, 0, 1} is called spin
at site x ¥ Z2 and Ox, yP denotes a pair of nearest neighbor sites in Z2.

We recall that −1, 0 and +1 denote the configurations with all spins
equal to −1, 0,+1, respectively. Consider a Blume– Capel system enclosed
in a finite torus L (square with periodic boundary conditions). The zero-
temperature phase diagram for different values of our parameters l and h
is the following one:

for l=h=0, the ground state is three times degenerate,
the configurations minimizing the energy
are −1, 0 and+1;

for h > 0 and h > −l, the ground state is+1;
for h < 0 and h < l, the ground state is −1;
for l < 0 and l < h < −l, the ground state is 0.

For h=0, l > 0 : +1, −1 coexist. For h=l < 0 : −1, 0 coexist. For
h=−l > 0 : +1, 0 coexist. These results are summarized in Fig. 1 where
the coexistence lines are shown.
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Fig. 1. Phase diagram at zero temperature.

We write

À :={g : - x ¥ L g(x) ] −1} (2.8)

to denote the set of all configurations free of minuses.
We say that two configurations s, sŒ are nearest neighbors if they differ

only for the value of the spin at a single site x and the absolute value of the
spin variation in x is one. The corresponding increment in energy is given
by:

DH(s, x, s(x), sŒ(x))=(4−l) Ds2(x)−(2(n+x −n
−
x )+h) Ds(x)

=lŒ Ds2(x)−hŒ Ds(x) (2.9)

where Ds2(x) :=sŒ(x)2−s(x)2, Ds(x) :=sŒ(x)−s(x) and n+x or n−x is the
number of nearest neighbors of the site x with spin+1 or −1, respectively.

lŒ :=4−l and hŒ=h −x(s) :=(2(n
+
x −n

−
x )+h) have the meaning of

effective chemical potential and magnetic field, respectively. Formally,
DH=H(sŒ)−H(s).

We write

s \ sŒ if s(x) \ sŒ(x) - x ¥ Z2 (2.10)

We will repeatedly make use of the fact that hŒ is an increasing func-
tion of s w.r.t. the partial ordering given by (2.10).
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The dynamics is given by a continuous time Markov process defined
by the following Metropolis transition rates from the configuration s to the
configuration sŒ ] s:

cb(s, sŒ) :=3
e−b[DH(s, x, s(x), sŒ(x))]

+
if s and sŒ are n.n. with s(x) ] sŒ(x)

0 otherwise
(2.11)

The parameter b has the meaning of inverse temperature.
It is immediate to verify that the rates (2.11) fulfill the reversibility

condition w.r.t. the Gibbs measure corresponding to the hamiltonian (1.1)
(see [Li]).

Two configurations s and sŒ are called connected if cb(s, sŒ) ] 0. With
our dynamics, two configurations are connected if and only if they are
nearest neighbors.

Note that here (unlike the dynamics used in [CiO] to study metasta-
bility for the Blume–Capel model in finite volume) direct transitions from
−1 to+1 and vice versa are not allowed.

We will show in the next subsection that with this dynamics we can
take advantage of the attractivity of the hamiltonian.

It is easy to see that in the large b regime this dynamics is equivalent
to that in [CiO] in the sense that all results obtained there can be trans-
ported to our case. However, since we look specifically at the −1Q À
transition (which was not considered in [CiO]) and since we are interested
in the whole region of parameters h > | l | (in [CiO] l < 0 was only par-
tially discussed), we analyze in Subsection 6.1 the energy landscape and in
particular the saddles in a self- contained way.

We show that in finite volume and for sufficiently large b typical
decay times and patterns from the metastable state −1 to the stable state
+1 are the same in both dynamics (see Lemmata 6.2, 6.3, below).

2.3. Basic Coupling

In order to exploit the attractive (ferromagnetic) nature of the hamil-
tonian, we introduce a coupling between processes starting from different
configurations and possibly evolving in different volumes and feeling dif-
ferent boundary conditions: we associate with every site x ¥ Z2, indepen-
dently from site to site, a sequence of i.i.d. exponentially-distributed
random variables with rate 1. We denote these sequences by {t−0x, i}i ¥N,
{t0−x, i}i ¥N, {t0+x, i}i ¥N and {t+0x, i}i ¥N.

Let be g ¥ {−1, 0,+1}Z
2

and b ¥ {−1, 0,+1}; we denote by gb, x the
configuration obtained from g by setting to the value b the spin in x and
leaving the spin of the other sites unchanged. Let us now define the updat-
ing rule for the process st: At time tabx :
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1. s(y) with y ] x, remains unchanged.

2. if s(x) ] a, s remains unchanged, otherwise, if s(x)=a, we extract
a random variable u, uniformly distributed in [0, 1] independently of any
other variable; if u < cb(s, sb, x), then we set stabx (x)=b namely, stabx=sb, x.

The general expression of the finite-volume hamiltonian in the volume
L … Z2 is given by:

HzL(s) := C
Ox, yP ¥ L

(s(x)−s(y))2−h C
x ¥ L

s(x)−l C
x ¥ L

s(x)2

+ C
Ox, yP s.t.
x ¥ L, y ¥ Lc

(s(x)−z(y))2 (2.12)

where sL ¥ {−1, 0,+1}L and z ¥ {−1, 0,+1}L
c
is the boundary condition.

We define the finite volume dynamics corresponding to different initial
and/or boundary conditions on the same probability space: We call

sgL; z; t (2.13)

the process in the volume L, with boundary condition z and initial condi-
tion g. To construct the random configuration sgL; z; t we only use the
random times ‘‘internal’’ to L and the rates cb(s, sŒ)=c

z
b(s, sŒ) computed

according to (2.11) with DH(s, sŒ, a, b)=HzL(sŒ)−H
z
L(s). We will omit L,

g or z from notation if L=Z2, g=−1 or z=−1, respectively.
Given a square L, on the probability space of Poisson times, we also

introduce the finite volume process under periodic boundary conditions

s̄gL; t

Notice that simultaneous spin changes have zero probability; we will
often implicitly use this fact in the following proofs.

A fundamental property of the above defined coupling is that it pre-
serves the partial ordering (2.10) among the configurations.

If g [ gŒ, z [ zŒ, and L ı LŒ, then

sgL; z; t [ sgŒL; zŒ; t

sgL; t [ sgŒLŒ; t

sgL; t [ sgŒt

sgL; t [ s̄gL; t.

(2.14)
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The key point is that, since the spin jump is not larger than one, it is
impossible for the lower process to overtake the higher one.

As an example, we prove the first inequality in (2.14): Let s=tabx be the
first time at which, ab absurdo, sgŒL; zŒ; s(x) < sgL; z; s(x). Let sŒ < s be the last
time before s at which there is a spin change and let s̄ ¥ ]sŒ, s[. Since the
dynamics does not allow a spin change larger than one, sgL; z; s̄(x) sgŒL; zŒ; s̄(x).
It would follow cb(s

g
L; z; s̄, s

g
L; z; s) > cb(s

gŒ
L; zŒ; s̄, s

gŒ
L; zŒ; s). This is absurd by (2.9)

and (2.11), since h −x(s) is an increasing function of s.
We stress that for the dynamics used in [CiO], it is not possible to

define a coupling with the above mentioned properties. This is the main
reason why we are using a different (though equivalent) dynamics.

It is possible to relate our continuous-time process in a finite volume L

to a discrete time version given by the Markov chain Xj :=sL; tj, where
t0 :=0 and tj+1 is the first time after tj when a Poisson clock ta, bx ‘‘rings’’
inside L. We are particularly interested in hitting times to given sets of
configurations. These times will turn out to be typically exponentially long
in b. By using standard large-deviation estimates on Poisson times, it is
easy to show that there is no difference between the continuous time and
the discrete time dynamics as far as large b asymptotics of these times is
concerned. Therefore, we will immediately transport to the continuous-
time case all results given in [OS] for the discrete-time, finite-volume
dynamics.

Let us consider a finite box L with periodic boundary conditions.
Given a subset O of the configuration space, it is interesting to consider the
process

s̃O; g
L; t (2.15)

restricted to O. It is defined in the following way: starting from g ¥ O, we
update s̃O; g

L; t with the same rule as s̄gL; t whenever the Poisson marks do not
lead the process s̃O; g

L; t out of O; we simply ignore the Poisson marks asso-
ciated to the moves that bring the process outside O (reflecting barrier on
“O). In particular, we will use the finite volume processes restricted to
{−1, 0}L and to {0, 1}L, we call them

I− and I+ (2.16)

respectively. By looking at the transition rates, it is easy to notice that these
processes are in fact dynamic Ising models with magnetic field h−l and
h+l, respectively. We will use these processes (and the results about the
Ising model obtained in [DSch2]) to bound from above and from below
s̄gL; t.
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2.4. Critical Lengths and Activation Energies

We introduce some interesting side-lengths useful to characterize the
tendency of droplets to grow or shrink:

L* :=
2
h+l

L̃ :=
2+2l
h+l

M* :=
2
h−l

M̃ :=
2−2l
h−l

a* :=
2−h+l

h

(2.17)

We introduce the following energies:

C À :=min {8Ka*L+8−(2Ka*L 2+3Ka*L+5) h+(5Ka*L+3) l,

8Ka*L+4−(2Ka*L 2+Ka*L−4) h+5Ka*L l,

4KM*L−(h−l)(KM*L 2− KM*L+1)}

=min 3 8+2h+10l
h

,
4+2h−2l
h−l
4+O(h+l). (2.18)

C+ :=4KL*L−(h+l)(KL*L 2− KL*L+1)=
4+2h+2l
h+l

+O(h+l) (2.19)

We will look at C À as the activation energy of a critical droplet of
zero-pluses and C+ as an upper estimate to the activation energy of the
critical droplet of pluses in the sea of ‘‘non-pluses’’ (in fact it is the Ising-
like activation energy of a critical droplet of pluses in the sea of zeroes).

Note that, as it has been shown in [CiO], in the region 0 < l < h < 2l,
in finite volume the pluses are directly created from the minus phase
without passing through the configuration 0 and therefore there is no need
to consider C+. However, we will see that C+ provides a useful upper
estimate for our infinite- volume results.

The following quantities represent the energies associated to the unit-
square protuberances of zeroes or pluses respectively and they characterize
the speeds of local growth of the zeroes and pluses:

c À — c0 :=2−h+l (2.20)

c+ :=2−h–l (2.21)
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It will turn out that the typical hitting times to the origin for the non-
minuses and the pluses are of the form abo, where k for different values of l

and h can be given by:

k0 :=
C À+c0

3
(2.22)

k+ :=
C++c+

3
(2.23)

kg :=
C++max{c0, c+}

3
(2.24)

In the present paper, we will only consider the region h > | l | > 0,
where H(−1) > H(0) > H(+1).

We detect a change in the mutual relationships between the relevant
quantities (activation energies) when crossing the l=0 line:

1. if h > −l > 0,

C+ > C À , c+ > c0, k+=kg > k0 (2.25)

2. if h > l > 0,

C+ < C À , c+ < c0, k+ < kg < k0 (2.26)

The main result of this paper (see Theorem 1) is that this change is
related to a sort of dynamical phase transition at l=0.

We will use the following symbols:

Pg(E) :=P(E | s0=g) (2.27)

is the probability of the event E (set of trajectories) starting from the con-
figuration g.

We denote by

Q(L) (2.28)

the square with side-length 2L+1 centered at the origin,

L0 :=Q(Neb(k0−(c0/2))M) (2.29)

L* :=Q(Neb(kg−(c0/2))M) (2.30)

L̄ :=Q(Nebk0M) (2.31)
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For technical reasons, we introduce two sufficiently large constants (inde-
pendent of b) D and DŒ.

Q :=Q(D) (2.32)

The two constants D and DŒ are chosen large enough to ensure that 1) the
‘‘critical droplet’’ in the volume Q has the same shape as the ‘‘critical
droplet’’ in infinite volume (see Subsection 6.1 and Lemma 7.1); 2) that the
nucleation rate in Q is not influenced by the spins outside Q (see Lem-
ma 6.6) and 3) that once the volume Q is completely full of non-minuses
(or pluses) it is very unlikely that too many minuses (or nonpluses) will
form thereafter (see Lemmata 7.2, 9.3). We take DŒ=D/5.

2.5. The Infection Processes

We will be interested in analyzing the −1Q À and the À Q+1
transitions.

For x ¥ Z2, we recursively define the following À-disinfection times
ŷ À
i (x) and À-infection times y̌ À

i (x):

ŷ À
0 (x) :=0

y̌ À
i (x) :=inf {t > ŷ À

i−1(x) such that the number of minuses in Q+x is 0}

ŷ À
i (x) :=inf 3 t > y̌ À

i (x) s.t. the number of minuses in Q+x is at least
D
3
4

A site x is called À-infected for the process st(x) at time t if
t ¥ [y̌ À

i (x), ŷ
À
i (x)[, for some i > 0.

In the same way, we introduce the +infection and +disinfection times
y̌+i (x) and ŷ+i (x), but here we consider the volume Q(D−1) and give con-
ditions on the number of ‘‘non-pluses’’ instead of the number of minuses:

ŷ+0 (x) :=0

y̌+i (x) :=inf {t > ŷ+i−1(x) such that the number of non-pluses

in Q(D−1)+x is 0}

ŷ+i (x) :=inf 3 t > y̌+i (x) s.t. the number of non-pluses

in Q(D−1)+x is at least
D
3
4
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The quantities that we want to estimate are

y À :=y̌ À
1 (0) (2.33)

y+ :=y̌+1 (0) (2.34)

and

y À+ :=y+−y À (2.35)

Note that with this definition, the infection time unfortunately
depends on D. However, this dependence will turn out to be irrelevant for
the results we give. Indeed, the key finite-volume results of Lemma 4.3
guarantee that the time needed to reach the stable configuration has the
same asymptotic behavior, for large b, as the time needed to reach the cri-
tical droplet and thus it does not depend significantly on D as far as D is
sufficiently large but independent of b.

We say that the process sL0; t Locally Exceeds the Critical Energy
(LECE) at time t if there is some translate QŒ of Q inside L0 such that
HQŒ(sQŒ; t)−HQŒ(−1) > C À .

We define the following stopping time, having the meaning of nuclea-
tion time in L0:

yL
0

LECE :=min {t : sL0; t LECE} (2.36)

2.6. Space-Time Clusters

Two space-time points (x, t) and (y, tŒ) with t < tŒ are called directly
zero-plus connected ( À-connected) if either {x=y, sgL; z; s(x) ] −1
- s ¥ [t, tŒ]} or {t=tŒ, ||x−y||=1, sgL; z; t(x) ] −1 and sgL; z; t(y) ] −1}.

Two space-time points (x, t) and (y, s) are called À-connected if there
exists a sequence of pairwise directly À-connected points starting from
(x, t) and ending in (y, s).

Consider the process s at times up to time t. Let (x, tŒ) be a space-time
point. We call space-time cluster of zero-pluses, the maximal À-connected
set C À

x, tŒ(s, t) of space-time points (y, s) such that s [ t, that contains
(x, tŒ).

Likewise, two space-time points (x, t) and (y, tŒ) with t < tŒ are called
directly +connected if either {x=y, sgL; z; s(x)=1 - s ¥ [t, tŒ]} or {t=tŒ,
||x−y||=1, sgL; z; t(x)=1 and sgL; z; t(y)=1}.

Two space-time points (x, t) and (y, s) are called +connected if there
exists a sequence of pairwise directly +connected points starting from
(x, t) and ending in (y, s).
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We call space-time cluster of pluses, the maximal +connected set
C+x, tŒ(s, t) of space- time points (y, s) such that s [ t, that contains (x, tŒ).

We call section at time t of a space-time cluster the set of all sites x
such that (x, t) is in the space-time cluster (note that this set may be non-
connected).

The width |C(s, t) | of a space-time cluster is defined to be the largest
spatial distance ||x−y|| between the points (x, t), (y, s) in the space-time
cluster.

We will often use the terms cluster or droplet for a *-cluster (in the
sense of site percolation, see [G]).

3. MAIN RESULTS

Our main results are contained in the following theorems:

Theorem 1. ,h0 such that - d > 0,

1. In the region 0 < −l < h < h0 (where C+ > C À and c+ > c0),

1.1) P(eb((C À+c0)/3−d) < y À < eb((C À+c0)/3+d))||QbQ. 1

1.2) P(eb((C++c+)/3−d) < y+ < eb((C++c+)/3+d))||QbQ. 1

1.3) P 1y À+

y À
> eb((C+−C À+c+− c0)/3−d)2||QbQ. 1

2. In the region 0 < l < h < h0 (where C À > C+ and c0 > c+),

2.1) P(eb((C À+c0)/3−d) < y À < eb((C À+c0)/3+d))||QbQ. 1

2.2) P(eb((C À+c0)/3−d) < y+ < eb((C À+c0)/3+d))||QbQ. 1

2.3) P 1y À+

y À
< eb((C À −C+)/3−d)2||QbQ. 1

Note that points 1.1), 2.1) and 2.1), 2.2) in Theorem 1 imply the exis-
tence of a sort of dynamical phase transition: when crossing the l=0 line,
the ratio between y+ and y À passes from being ‘‘approximately 1’’ (for
l > 0) to being very large (l < 0). Points 1.3) and 2.3) give a much stronger
result describing the time interval elapsing from the arrival of the non-
minuses to the arrival of the pluses. The length of this time interval is
strongly related to the particular configuration at the hitting time to À ;
since we do not have a detailed control of this configuration, we can only
estimate this time from above.
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Fig. 2. Typical relaxation times described in Proposition 1.

Theorem 1 is a direct consequence of the following Proposition, con-
cerning asymptotic behavior of y À , y+, y À+, expressed in terms of k0, k+,
kg and valid in the whole region of parameters h > | l | .

Proposition 3.1. ,h0 such that if h0 > h > | l | > 0, then - d > 0:

a) P(y À > eb(k0−d))||QbQ. 1 (3.1)

b) P(y À < eb(k0+d))||QbQ. 1 (3.2)

c) P(y+ > eb(k+−d))||QbQ. 1 (3.3)

d) P(y À+ < eb(kg+d))||QbQ. 1 (3.4)

Proof of Theorem 1. Clearly, from (3.2) and (3.4), it easily follows
that - d > 0

P(y+ < eb(max {k0, kg}+d))||QbQ. 1 (3.5)

and from (3.2) and (3.3) it easily follows that for k+ > k0,

P(y À+ > eb(k+−d))||QbQ. 1 (3.6)

Then, 1.1) and 2.1) of Theorem 1 directly follow from (3.1) and (3.2),
1.2) follows from (3.3) and (3.5), 2.2) follows from (3.1) and (3.5), and
finally 1.3) follows from (3.2) and (3.6) while 2.3) from (3.1) and (3.4) (see
(2.22), (2.23), (2.24) for the definitions of k0, k+ and kg). L

We will prove Proposition 3.1 a), b), c), d) in Sections 6, 7, 8 and 9.

Theorem 2. Let h > l > 0.
Let g0 be the configuration where Q is full of zeroes and L00Q is full

of minuses.
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Fig. 3. Typical shape of large droplets described in Theorem 2.

Let us consider the process sg
0

L
0; t. Let R À

ext(t) be the smallest rectangle
containing the section at time t of C À

0, 0(s
g
0

L
0; t, t).

Let us consider a time T such that 1b ln T ¥ ]kg, k0[.
Then, with probability tending to one as b Q., at time T there is

a rectangle R+int(T) made of +infected sites inside R À
ext(T) such that

- r < r̂ :=min {c02 , k−k+−
c0
2 },

diam(R À
ext(T))

diam(R+int(T))
[ 1+e−br (3.7)

This Theorem will be proved in Section 10.

4. THE EXIT PROBLEM

The problem of metastability in the Freidlin–Wentzell regime (namely,
finite volume and b Q.) can be successfully studied in the framework of
the exit problem theory for Markov chains (see [OS], [CaCe]).

We will see in Lemma 6.5 that the formation of the critical droplet in
infinite volume is still a local phenomenon (it only depends on the sites
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near the droplet) and can be studied in a suitable finite volume. This is
basically due to the fact that our dynamics is single-spin-flip and the flip
rates have a local dependence on the configuration.

The main new issue is that now we must study the finite-volume exit
problem at times much smaller than the typical exit time. Heuristically,
since the volume is very large, supercritical droplets appear very rapidly.
Hence, our need to describe the exit problem at small times.

This problem was solved in [DSch2] in the particular case of the
kinetic Ising model but it was not studied in the classical approaches to
metastability. In this Section, we use the methods developed in [OS] to
solve the problem of ‘‘fast nucleation’’ in a general setting.

Let us give some definitions concerning a general Metropolis Markov
chain in the so called Freidlin–Wentzell regime: Let X be a finite configu-
ration space. Consider an ergodic, aperiodic Markov chain with transition
probability from the configuration g to the configuration gŒ ] g given by

P(g, gŒ)=q(g, gŒ) exp(−b[H(gŒ)−H(g)]+)

where H: XQ R is called energy function and q(g, gŒ)=q(gŒ, g) is an irre-
ducible Markov kernel.

We define the first hitting time to the set Q …X as:

yQ :=min{t > 0 : st ¥ Q}

g, gŒ are called communicating configurations if P(g, gŒ) > 0. A path w is a
sequence w :={g1, ..., gn}, n ¥N , where gj, gj+1, j=1, ..., n−1 are com-
municating configurations. We write w: g Q gŒ to denote a path starting
from g and ending in gŒ.

A set Q …X is called connected if - g, gŒ ¥ Q there exists a path
w: g Q gŒ entirely contained in Q.

We say that a configuration g is downhill connected to a configuration
gŒ if there exists a path w=(g0=g, g1, ..., gk=gŒ) with H(gi+1) [H(gi),
i=0, ..., k−1. We write w: g s gŒ to denote such a path.

We write F(Q) :={s ¥ Q : H(s)=mins' ¥ QH(s')} and U(Q) :=
F(“+Q).

By abuse of notation, we write H(Q) to mean the energy of any con-
figuration in a set Q with H(g)=const. -g ¥ Q.

g is called stable configuration if H(U({g})) > H(g), namely, if g is a
local minimum of the energy. We will denote by M the set of stable con-
figurations.

We call depth C(Q) :=H(U(Q))−H(F(Q)) the energy gap between
F(Q) and U(Q).
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We call cycle a connected set A such that H(U(A)) >maxs ¥ AH(s).
A cycle A for which there exists g* ¥ U(A) downhill connected to a

point g in Ac with H(g) < H(U(A)), is called transient; given a transient
cycle A the points g* ¥ U(A) downhill connected to g ¥ Ac with H(g) <
H(U(A)) are called minimal saddles. The set of the minimal saddles of a
transient cycle A is denoted by S(A). More generally, given a set of con-
figurations Q, we denote by

S(Q) (4.1)

the (possibly empty) set of configurations g ¥ U(Q) which are downhill
connected to some ḡ ¥ Qc with H(ḡ) < H(U(Q)).

A transient cycle A such that ,ḡ ¨ A with H(ḡ) < H(F(A)),
,g* ¥S(A) and a path w: g*Q ḡ below g* (namely -g ¥ w, g ] g*,
H(g) < H(g)), is called metastable.

Given a stable state g, we consider the smallest transient cycle A con-
taining it; we call A strict basin of attraction of g and denote it by

B̄(g) (4.2)

For each pair of configurations g, gŒ ¥X we define the set of their
minimal saddlesS(g, gŒ) as follows:

Let for any path w

Ĥ(w) :=max
g ¥ w
H(g)

The communication height between g and gŒ is

H̄(g, gŒ) := min
w: gQ gŒ

Ĥ(w)

We set:

S(g, gŒ)={z : H(z)=H̄(g, gŒ); ,w: g Q gŒ, w ¨ z : max
t ¥ w
H(t)=H̄(g, gŒ)}

(4.3)

We define the saddle between sets of configurations in the natural
way: S(Q, QŒ) :=F({1g ¥ Q, gŒ ¥ QŒS(g, gŒ)}).

The saddles between stable configurations ( ¥M) will be called natural
saddles.

We call largest inner resistance G(Q) of the set Q the maximum depth
of any cycle contained in Q that does not contain the whole F(Q):

G(Q) := max
AŒ … Q s.t.
F(Q) ¼ AŒ

C(AŒ) (4.4)

If such a cycle does not exist, we set G(Q)=0.
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We denote by C(A) the set of natural saddles inside the cycle A and by
C̄(A) … C(A) the set of natural saddles with maximal energy.

A key property of cycles (Proposition 3.6 in [OS]) is that every cycle
A such that C(A) is non-empty can be uniquely decomposed as:

A=Ã 2 C̄(A) 2 V (4.5)

where Ã is a collection of cycles Ai such that H(U(Ai)) —H(C̄(A)) and V is
such that for every configuration g ¥ V there exists w: g s Ã. Moreover,
Ã 2 C̄(A) is a connected set. Notice that F(A) … Ã. We generalize this
decomposition to the case C(A)=” by setting Ã :=F(A) and V :=
A0F(A).

Lemma 4.1. - d > 0, -o < C(A) and sufficiently large b,

sup
g ¥ F(A)

Pg(y“+A [ ebo) [ e−b(C(A)−o−d) (4.6)

Proof. The proof is a straightforward consequence of the reversi-
bility of Metropolis dynamics. Indeed, -g, t ¥X such that H(t) > H(g) we
have:

Pg(yt < T) [ e−b(H(t)−H(g))T (4.7)

(see the proof of Lemma 1 in [KO]). From (4.7) the thesis immediately
follows. L

Let us now recall two of the main results in [OS]:

Proposition 4.2. Given a cycle A, -k > C(A) -t ¥ A

Pt(y“A < ebk)||QbQ. 1 (4.8)

-g ¥ “A, -e > 0 and for b sufficiently large

Pt(Xy“A=g) \ e−b(H(g)−H(u(A))+e) (4.9)

Proof. For the proof, see Proposition 3.7 in [OS]. L

The following Lemma is the counterpart of Lemma 4.1 and extends
(4.8), (4.9).
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Lemma 4.3. Given a non-trivial cycle A and a positive number k:

G(A) < k [ C(A)

we have -t ¥ A, -g ¥ “A, -e > 0 and b sufficiently large

Pt(y“A < ebk, Xy“A=g) \ e−b(H(g)−H(F(A))−k+e) (4.10)

Proof. The proof is very similar to the one of Proposition 3.7 in
[OS]; again, we use induction on the number of internal saddles.

We suppose | C(A) |=n+1 and assume (4.10) to be valid for every
cycle AŒ with | C(A) | [ n.

We use the decomposition (4.5) and discern the subcycles in Ã that
intersect F(A) : Ã=1h

i=1 Ai1 j
i=1 Ah+i, h \ 1, j \ 0, Ai 5 F(A) ]” for

i=1, ..., h, Ai 5 F(A)=” for i=h+1, ..., h+j, U(Ai) 5 C̄(A) ]” for
i=1, ..., h+j.

We distinguish two cases (see Fig. 4):

Fig. 4. Relevant quantities in a one-dimensional case.
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a) k > H(C̄(A))−H(F(A)) — C̄(A), where we use (4.8), (4.9)

b) k [ C̄(A), where we use the inductive hypothesis on the cycles in Ã
which is certainly valid since, of course, | C(Ai) | [ n, i=1, ..., h+j.

Notice that (since we only consider k > G(A)) when h(A) \ 2 (i.e. when in
Ã there are at least two cycles with non-empty intersection with F(A)) we
necessarily have G(A)=C(A1)=C̄(A) and only case a) is possible. It will
be clear in the proof of case b) that if we had considered the case k [ G(A)
we could not have handled it with our construction. This is not a limit of
our proof but a crucial feature of the exit problem at very small times.
When considering such small times, the inner structure of the cycles
becomes relevant and counterexamples where (4.10) is not valid are easy to
find.

Case a): Let us first prove

Pt(y“A < ebk) \ e−b(C(A)−k+e) (4.11)

-e > 0, b sufficiently large.
Given kŒ ¥ ]C̄(A), k[, let us divide the time interval ebk into

Nebk/(NebkŒM+1)M subintervals larger than ebkŒ.
We take kŒ=C̄(A)+eŒ with a suitable choice of eŒ.
We have, by using Markov property

Pt(y“A > ebk) [ [sup
z ¥ A

Pz(y“A > ebkŒ)]e
b(k−kŒ)

(4.12)

Let t ¥ A, T1=ebkŒ. We define an event Et, T1 analogous to the one intro-
duced in the proof of Proposition 3.7 in [OS]. Et, T1 consists in a set of
trajectories starting from t and exiting A within the time T1 in a particular
manner:

Given g* in U(A) there is a downhill path t̄0, t̄1, ..., t̄m−1, t̄m with
t̄0=g*, t̄1, ..., t̄m−2 ¥ V, t̄m−1 ¥ “Ã, t̄m ¥ Ã. It may happen that g* ¥ “Ã. In
that case, we set k=1 and the path is just one step. We call Aj* the cycle in
Ã to which t̄m, belongs.

The trajectories in Et, T1 first enter Ã within time T1/4 then, by follow-
ing a suitable finite sequence of cycles in Ã they hit Aj* in a time shorter
than T1/4; subsequently, they exit from Aj*. within another interval T1/4
through t̄m−1. Finally, they follow without hesitation the uphill path
t̄m−1, t̄m−2, ..., t̄1, g; obviously, for b large enough this last segment takes
place within T1/4. We refer to the proof of Proposition 3.7 in [OS] for
more details.
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We have by (4.8), (4.9) applied to the sequence of cycles in Ã, since
kŒ > C(Al) l=1, ..., h+j

P(Et, T1) \ e
−b(H(U(A))−H(C̄(A))+e') (4.13)

-e' > 0, b sufficiently large.
From (4.12) and (4.13), we have for b sufficiently large

Pt(y“A > ebk) [ [1−e−b(H(U(A))−H(C̄(A))+e
')]e

b(k− C̄(A)− eŒ)

[ 1−e−b(C(A)−k+e)

-e > eŒ+e' and (4.11) follows.
To conclude the proof, we need some more definitions.
Given t ¥ A we set

ht=sup{t < y“A : Xt=t}

y −t=y“A−ht
(4.14)

(we set ht=y“A; y −t=0 when yt > y“A).
It follows from (4.8), (4.9) that -e > 0 ,c > 0:

sup
t ¥ F(A)

Pt(yt > eb(G(A)+e), y“A > eb(G(A)+e)) [ e−e
cb

(4.15)

for b sufficiently large.
To simplify notation we write SES to denote a superexponentially (in

b) small quantity like r.h.s. of (4.15).
It follows from (4.15) that -t ¥ F(A)

Pt(y
−

t > e
b(G(A)+e)) [ SES.

We have from (4.14), (4.15), taking into account that k > C̄(A)

Pt(y“A [ ebk, Xy“A=g) \ Pt 1ht [
ebk

2
, y −t [

ebk

2
, Xy“A=g2

=Pt 1ht [
ebk

2
, Xy“A=g2−Pt 1ht [

ebk

2
, y −t >

ebk

2
, Xy“A=g2

\ Pt 1ht [
ebk

2
, Xy“A=g2−SES (4.16)
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Now, it is easy to see that for any T > 0, -t ¥ A

Pt(ht [ T, Xy“A=g)=Pt(ht [ T) Pt(Xy“A=g) (4.17)

Indeed,

Pt(ht [ T, Xy“A=g)=51+P(t, t)+C
T−1

s=2
C

t1, ..., ts−1 ¥ A
P(t, t1, ..., ts−1, t)6

×5P(t, g)+C
.

l=2
C

g1, ..., gl−1 ¥ A0(t)
P(t, g1, ..., gl−1, g)6

(4.18)

On the other hand we have

Pt(ht [ T)=51+P(t, t)+C
T−1

s=2
C

t1, ..., ts−1 ¥ A
P(t, t1, ..., ts−1, t)6

×5 C
z ¥ “A
P(t, z)+C

.

l=2
C

g1, ..., gl−1 ¥ A0{t}
P(t, g1, ..., gl−1, z)6

(4.19)

One has:

Pt(ht [.)=1 (4.20)

as it follows from an immediate estimate based on ergodicity of our chain
with finite state space and Borel–Cantelli’s Lemma.

From (4.18), (4.19), passing to the limit TQ., we get:

P(t, g)+; .

l=1;g1, ..., gl−1 ¥ A0{t} P(t, g1, ..., gl−1, g)
;z ¥ “A P(t, z)+; .

l=1;g1, ..., gl−1 ¥ A0{t} P(t, g1, ..., gl−1, z)
=Pt(Xy“A=g)

(4.21)

From (4.21), (4.18), (4.19), we conclude the proof of (4.17).
From (4.16), (4.17), we get taking t ¥ F(A), z ¥ A

Pz(y“A [ ebk, Xy“A=g) \ Pz 1ht [
ebk

2
2 Pt(Xy“A=g)−SES

\ Pz 1y“A [
ebk

2
2 Pt(Xy“A=g)−SES (4.22)

From (4.22) and (4.9), we conclude the proof in case a).
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Let us now go to case b). Since k > G(A) \ G(A1) and k [ C(A1)=
C̄(A), we know that h=1 namely, in Ã there is a unique cycle A1 contain-
ing the whole F(A).

We use the iterative hypothesis on A1 (obviously, | C(A1) | [ n), while
we use (4.8), (4.9) to handle the exit from the other subcycles since
k > C(Aj) -j \ 2.

Let t̄1, ..., t̄m and Aj*. be defined like in case a).
For any z ¥ A we consider again an event Ez, T1 with T1=ebk: The

trajectories in Ez, T1 first go to A1 within a time T1/4, following a suitable
finite sequence of distinct cycles in Ã0A1 (by always exiting through C̄(A)).
Then they exit A1 and follow an analogous sequence of distinct cycles in
Ã0A1 up to Aj* within another T1/4. Finally they exit from a suitable t̄m−1
within another T1/4 and go uphill up to g* ¥ “A like before.

The rest of the estimate goes as in the previous case.
So we get

P(Et, T1) \ e
−b(H(U(A1))−H(F(A))−k+e)e−b(H(U(A))−H(C̄(A))+e) (4.23)

where we used that the exit from Aj* followed by the fast ascent to g* gives
a contribution

e−b(H(U(A))−H(C̄(A))+e)

From (4.23) we conclude the proof of

Pt(y“A < ebk) \ e−b(C(A)−k+e)

and then, with the previous argument, the proof of (4.10).
Notice that in present case b) we do not use recurrence and Markov

property as in (4.12); indeed we could have obtained directly the result by
simply substituting in our construction g to g* ¥ “A (not necessarily belon-
ging to U(A)) by avoiding in this way the use of (4.17).

To conclude the proof of Lemma 4.3 we only need to prove the basis
of the induction namely, the case of A completely attracted by a unique
stable plateau F(A).

In this case again we construct an event taking place in a finite (inde-
pendent of b), sufficiently large interval T0 consisting in descending from a
generic z ¥ A to F(A) and then ascending to U(A) following an uphill path
towards g.

The proof goes like that of case a). L
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5. PRELIMINARY ANALYSIS OF THE DYNAMICS

In this section we give some more definitions and a brief survey of the
growth and contraction mechanisms that will be useful in the following
sections.

5.1. The Bootstrap Procedure

Let A … Z2 be a finite set. Let nnA(x) be the number of nearest neigh-
bors of the site x belonging to A.

We recursively take Ai :=Ai−1 2 {x ¥ “+Ai−1 : nnAi−1(x) \ 2}, where
A0 :=A. It is easy to see that in a finite number of steps this procedure
converges to a final set that we denote by B(A). Indeed every Ai is con-
tained into the ‘‘rectangular envelope’’ of A (namely the smallest rectangle
containing A). Since the rectangular envelope of A is a finite set, the pro-
cedure stops in a finite number of iterations and B(A) is clearly contained
in the rectangular envelope of A. We call bootstrap this procedure.

Notice that B(A) is either a single rectangle or a set of rectangles
whose mutual distance || · ||1 is at least 2.

We use the same terminology to describe the analogous configuration-
valued procedure. E.g. let I+(g) be the set of pluses in the configuration g,
we call bootstrap of the pluses in g, the configuration B+(g) obtained from
g by setting to plus all the spins of the sites in B(I+(g)).

We call picture frame envelope of a set of À-clusters, the configuration
having pluses inside the smallest rectangle containing the set, zeros on the
outer boundary of such rectangle and minuses elsewhere.

Let C À
x, 0(s, 0) be a cluster of zero-pluses and g be its picture-frame

envelope. We say that the space-time cluster exits its picture-frame envelope
at time t iff t=inf {s > 0; ,y ¥ C À

x, 0(s, s) s.t. ss(y) > g(y)}.

Fig. 5. Picture frame envelope.
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The interesting feature of this configuration is that starting from a
configuration containing a given À-cluster, it is not possible to exit its
picture-frame envelope without interacting with another droplet or over-
coming a positive energy barrier.

5.2. Growth and Contraction Mechanisms

In order to understand the shape of the local minima of the hamilto-
nian, we briefly survey all possible downhill growth mechanisms: The
region we are interested in is:

0 < | l | < h° 1

i) growth of ‘‘zero-pluses’’ in the sea of minuses.
The formation energy of a zero from a minus is:

DH=−lŒ−hŒ=l−h−4−2(n+−n−) (5.1)

DH is negative iff n+\ n −−2.
The only two cases with energy gain are a) n− [ 2 (i.e. two non-minus

nearest neighbors), or b) n−=3 and n+=1 (i.e. removal of a direct inter-
face). These mechanisms are schematically displayed in Fig. 6.

Fig. 6. Downhill growth mechanisms for the zero- pluses.
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The first mechanism can be controlled with the bootstrap process: it
cannot create a non-minus out of the region spanned by the bootstrap of
the non-minuses.

The second mechanism can change to zero the minus sites directly
neighboring a plus and hence it can at most add a layer of zeroes to a con-
figuration.

The two mechanisms can neither create pluses out of the region
spanned by the bootstrap of the initial configuration of non- minuses nor
have zeroes out of the outer boundary of such region.

It is clear that in order for a À-cluster to be able to exit its picture
frame envelope, either there is another cluster closer than three units (in the
|| · ||1 norm) from this region or a unit-square protuberance (of zeroes inside
the minuses or of pluses inside the zeroes) must be formed.

ii) growth of minuses in the sea of non-minuses.
The energy needed to form a minus is:

DH=+lŒ+hŒ=−l+h+4−2(n+−n−) (5.2)

DH is negative if n+=0 and n− \ 3
The droplets of minuses can always be eroded from the corners,

though possible holes or inlets of non-minuses can be removed from inside.
The region the minuses can span following a downhill path is contained
inside the region spanned by the bootstrap of the non-minuses.

iii) growth of non-pluses in the sea of pluses.

Fig. 7. Downhill transitions from zero to minus.
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Fig. 8. Region that the minuses can span following a downhill path.

The energy needed to change a plus into a zero is:

DH=−lŒ−hŒ=−4−l+h+2(n+−n−) (5.3)

DH is negative if n+−n− < 2.
The cases with energy gain are {n+=2, n− \ 1} and n+[ 1. The only

configurations where a plus with two plus neighbors can change to zero
lowering the energy contain a direct interface minus-plus.

Only inlets or isolated droplets can be removed from inside the non-
pluses.

The droplets of non-pluses can always be eroded from the corners
following a downhill path, being the transition −1Q 0Q+1 downhill if
n+\ 2.

6. THE FIRST METASTABLE REGIME: PROOF OF PROPOSITION 3.1

CASE a)

6.1. Finite-Volume Energy Landscape

We start our analysis by re-deriving and extending to our new dyna-
mics the finite-volume results obtained in [CiO]. It is possible to show (see
[M]) that for l < 4 the sets of local minima are the same in the two
dynamics and moreover, that the saddle between any couple of local
minima coincide in the two dynamics. Here, we directly study the new
dynamics in the whole region 0 < | l | < h° 1. Indeed, we are particularly
interested in the region near the l=0 line, which was not explicitly studied
in [CiO].
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Let us introduce some more definitions that will be used in this
Section:

Consider the process s̄Q; t in the finite volume Q under periodic
boundary conditions and the associated hamiltonian (see (2.12)). For the
process s̄Q; t, we call maximal subcritical cycle

A (6.1)

the largest (in the sense of inclusion) metastable cycle containing −1 and
not intersecting À . An equivalent definition of A will turn out to be ‘‘the
set of all configurations having the saddle with À above the saddle with
−1’’ (indeed this set is connected). Here, with ‘‘subcritical’’ we mean a
configuration that, with probability tending to one, evolves towards −1
before+1.

We will see (Lemma 6.3) that in a sufficiently large square Q,
A=A(Q) is the cycle (w.r.t. the above dynamics) given by the maximal
connected component containing −1 with depth lower than C À .

We will make use of the process

s̃gL; t :=s̃A; g
L; t (6.2)

restricted to the maximal subcritical cycle A (see (2.15)).
We will largely use the methods introduced in [CiO] to determine

supercriticality or subcriticality of local minima, focusing on the problem
of finding the largest inner resistance of the maximal subcritical cycle A.

We call cost of the path w the quantity

sup
i

sup
j \ i
[H(wj)−H(wi)]+ (6.3)

We call wrapping a configuration with a cluster of zero- pluses winding
around the torus Q. It will be clear in the following analysis that for large
enough D, wrapping configurations are outside the maximal subcritical
cycle A.

As it has been shown in [CiO], the non-wrapping minima of the
energy are families of plurirectangles, namely configurations containing
rectangles of zeroes with sidelengths greater than 1 and at least two units
away from each other in the || · ||1 distance. In the interior of the rectangles
of zeroes, these configurations can have rectangles of pluses with sides
larger than 1 and at least two units away from each other in the || · ||1 dis-
tance. Here and in what follows ‘‘in the interior’’ means ‘‘inside and at least
one unit away from the boundary’’ of the rectangles of zeroes.
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We call birectangle R(L0, l0, L+, l+) (where L0 \ l0 \ 2 and either
L+\ l+\ 2 or L+=l+=0) the set of configurations containing a single
rectangle L0×l0 of zeroes with a single rectangle L+×l+ of pluses in its
interior. Clearly L0 \ L++2, l0 \ l++2.

Heuristically, we consider three possibilities: both the rectangles of
zeroes and the rectangles of pluses inside them tend to shrink; some rec-
tangle of zeros tend to grow; some rectangle of pluses tend to grow while
all rectangles of zeroes tend to shrink. The first and the second case clearly
correspond to subcritical and supercritical configuration, respectively, while
the third case is more complex and deserves further investigation.

We call picture frame F(L+, l+) :=R(L++2, l++2, L+, l+) the set of
all configurations consisting of a single rectangle L+×l+ (where L+\
l+\ 2) of pluses surrounded by a unitary layer of zeroes. We consider −1
and wrapping minima as degenerate cases of plurirectangles.

As it has been shown in [CiO], the analysis of the criticality of the
rectangles traces back to the comparison between the energy of a unit-
square protuberance (namely c0 or c+ defined in (2.20) and (2.21)), and the
energies

j0(a) :=(a−1)(h−l) (6.4)

or

j+(a) :=(a−1)(h+l) (6.5)

that correspond to the erosion of the first a−1 sites of a rectangle with the
smallest side-length a, if the rectangle is made of zeroes inside the minuses
or pluses inside the zeroes, respectively. Indeed, the depth of the strict basin
of attraction of a rectangle of zeroes, with the smallest side-length a, is
either c0 or j0(a) (see the proof of Lemma 6.1 below). The same argument
applied to the rectangles of pluses leads to the comparison between c+ and
j+(a). This analysis leads to the introduction of the critical lengths in
(2.17).

Let us consider a birectangle R(L0, l0, L+, l+). The meaning of the cri-
tical lengths in (2.17) is the following:

c+ > j+(l+)Z l+< L* (6.6)

c+ > j0(l0)Z l0 < M̃ (6.7)

c0 > j0(l0)Z l0 <M* (6.8)

c0 > j+(l+)Z l+< L̃ (6.9)

c0+c+ > j+(l+)+j0(l++2)Z l+< a* (6.10)
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The cases l0 >M* or l+< L* easily lead back to the Ising-like case I− (see
(2.16)). Indeed, we will show that a configuration g consisting of a single
rectangle of zeroes is such that

g ¥AZ l0 <M* (6.11)

On the other hand, if gŒ is a local minimum with the smallest side of the
largest rectangle of zeroes equal to l0 and with the smallest side of the
largest rectangle of pluses equal to l+, then we have the following implica-
tion:

l0 <M* and l+< L*S gŒ ¥A (6.12)

The case l0 <M* and l+> L* leads to a complex growth-and-contrac-
tion mechanism involving both the zeroes and the pluses. Indeed, the for-
mation of a direct interface −1, +1 is highly unlikely, so that the rela-
tionships L0 \ L++2 and l0 \ l++2 are typically preserved during the
evolution. Therefore, there is a competition between the shrinking of the
rectangle of zeroes and the growth of the pluses inside it.

We use the constructive criterion introduced in [OS] to determine the
energy of S(−1, À ) and G(A): The criterion consists in finding a set G

of configurations with the following properties:

1. G is connected and -ḡ ¥S(G)

2. ,w: ḡ Q −1 s.t. w0 ḡ … G and H(t) < H(ḡ) -t ¥ w0 ḡ

3. ,wŒ: ḡ Q À s.t. wŒ … Gc and H(tŒ) < H(ḡ) -tŒ ¥ wŒ0 ḡ.

These properties ensure that S(G) —S(−1, À )=S(A) and that
A … G (see (4.1) for the definition of S).

In the following, we define G on geometrical grounds and bound the
inner resistance of A with the inner resistance of G.

We write

m*(L) :=L̃+
h−l

h+l
(M̃−2−L) (6.13)

and

f(L) :=min{a*, max{L̃, m*(L)}} (6.14)

Consider a non-wrapping minimum g ¥M (we recall that M is the set
of all local minima of the hamiltonian). Let L0i(g), l

0
i(g) with L0i(g) \

l0i(g) \ 2 be the side-lengths of the i-th rectangle of zeroes in g and let
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L0(g) :=maxi L
0
i(g), l

0(g) :=maxi l
0
i(g). Let L+j (g), l

+
j (g), L

+(g), l+(g) be
the analogous side-lengths for the rectangles of pluses. We extend in the
natural way this definitions to wrapping minima by setting, when neces-
sary, these lengths equal to D.

We define a map Y:MQM in the following steps:

i) We erase (by setting the spins to zero) all the rectangles of pluses
with minimum side-length l+i shorter than L*.

ii) For every rectangle of zeroes, we consider all remaining rectangles
of pluses inside it and take the smallest rectangle containing all of them.
We fill this rectangle with pluses.

We denote by Ma the set of local minima g such that:

l0(Y(g)) <M* (6.15)

and, for every i, one of the following conditions is verified:

1. l+i (Y(g))=0

2. l+i (Y(g)) \ L*, max {l0(Y(g)), L+i (Y(g))+2)} < M̃ and l+(Y(g)) <
f(L+i (Y(g)))

3. l+i (Y(g)) \ L*, max {l0(Y(g)), L+i (Y(g))+2)} \ M̃ and l0(Y(g)) <
f(L+i (Y(g)))+2

Notice that in the case h > −l > 0, condition 1. is automatically verified
for l0 <M.

We denote by G the set of configurations g such that every downhill
path starting from g ends in Ma (basin of attraction of Ma).

We remark that the set G̃ :={g such that Pg(y−1 < y À )||QbQ. 1} is in
general larger than G. We choose to restrict ourselves to G instead of
analyzing G̃ as G(G̃) can provide a too large upper estimate for G(A):
indeed, for suitable values of h, l we can have configurations g ¥ G̃ with
a* [ l+(Y(g)) < L̃; for these configurations the minimum cost of a path
w: g Q −1 exceeds G(A) (notice that in the region studied in [CiO] this
case cannot take place since L̃ < a*).

Lemma 6.1. 1. G is connected

2. G(G)c0.

Proof. In order to prove the thesis, it is sufficient to prove that
-g ¥Ma there exists a path, entirely contained in G and with a cost smaller
than c0, that connects g to −1.
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In the construction of this path, we will associate to every local
minimum g ¥Ma a suitable transient cycle that we will denote by B(g), such
that F(B(g))={g}. In most of the cases B will coincide with the strict
basin of attraction of g (see (4.2)). The introduction of these cycles allows
to focus the attention on the local minima in Ma instead of dealing with the
whole G.

Though it is not necessary for the proof, we describe S(B(g)) for the
various kinds of local minima of the hamiltonian; in particular, we will
often consider possible ‘‘growing patterns’’ and compare the associated
energy H(S(B(g))). We will refer to these results in the proof of Lem-
ma 6.3.

For every g ¥Ma, we will construct a path w: g Q −1, w ¥ G, with a
cost smaller or equal to

Ḡ :=max
t ¥Ma

C(B(t))

depth of B(t) for t ¥Ma. In this way, G(A) will be bounded by Ḡ. To find
the path w: g Q −1, we will observe that, with our definition of B,
-gŒ ¥Ma, S(B(gŒ)) is completely attracted by the minima in Ma (namely
every downhill path starting from S(B(g)) ends in Ma) and find a sequence
of minima {gk}k [K ¥Ma with B(g0) ¦ g, gK=−1 such that S(B(gk)) is
downhill connected with gk+1.

We call relevant minimum a configuration g ¥Ma consisting either of a
rectangle of zeroes or of a picture-frame F(L+, l+) with l+\ L*. It will turn
out that the geometrical shapes of relevant minima are ‘‘self reproducing’’
along the typical trajectories of our dynamics; for instance a relevant
picture-frame will evolve along a sequence of picture frames whereas an
irrelevant picture frame will not. Since relevant minima will play a special
role in the construction of the path w, we will analyze the energy landscape
around them.

We remark that our definitions and notation are conceived for the
general case and in some region of the parameters there is no need for such
a generality (e.g. if l < 0 relevant picture-frames in G do not even exist).

We now give the definitions of B(g) and characterize S(B(g)) for the
different kind of minima g ¥Ma:

Rectangles of zeroes. We take B(g) :=B̄(g). The case of a rectangle
of zeroes is Ising-like. It is a well known fact (see [Sch1] and [KO]) that if
l0(g) <M*, then S(B̄(g)) is obtained by setting to minus all but one the
sites of one of the shortest sides of the rectangle; hence, C(B̄(g))=
j0(l0(g)). This saddle is downhill connected with (and only with) a smaller
rectangle, i.e. a rectangle whose number of zeroes is smaller than that in g.
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Moreover, this smaller rectangle has a smaller energy. Hence, this proce-
dure can be iterated and we find a path with cost j0(l0(g)) < c0 connecting
g with −1.

Irrelevant picture-frames (l+< L*). We take B(g)=B̄(g). The
picture frames differ from other birectangles in having the cost of the
shrinking of the minuses as well as the cost of the growth of the pluses
much higher than c0 (because these moves create a direct interface −1,
+1). Hence, it is easy to see that S(B̄(g)) can be determined by the com-
parison of the cost c0 of the growth of the zeroes and the cost j+(l+) of the
shrinking of the pluses. For irrelevant picture-frames it is always
c0 > j+(l+). Indeed, if l < 0 then by (2.20), (2.21), (6.15), (6.4), (6.5) we get
that c+ > c0 > j0(l0)=j+(l+)−2l(l+−

h
l ) > j+(l+) (notice that {l < 0} 5

{l0 <M*}S {l+< L*} i.e. all picture-frames in Ma are irrelevant for
l < 0); for l > 0 and l+[ L* by (2.17) we get that L̃ > L* and hence, by
(6.9) c0 > j+(l+). Thus, for irrelevant picture-frames S(B̄(g)) is made of
configurations obtained from g by setting to zero all but one the spins on
one of the shortest sides of the rectangle of pluses. S(B̄(g)) is downhill
connected with and only with a birectangle gŒ ¥ R(L+(g)+2, l+(g)+2,
L+(g), l+(g)−1) or, in the case l+=2, with a rectangle of zeroes
gŒ ¥ R(L+(g)+2, l+(g)+2, 0, 0).

Relevant picture-frames (l+\ L*). In this case we take B(g) as the
largest transient cycle having as unique ground configuration the configu-
ration g. If l+\ h

l , B(g) contains the picture-frame g and, possibly, birec-
tangles in the form R(L++2, l++2, L+−1, l+) or R(L++2, L++2, L+,
L+−1).

Starting from a relevant picture-frame, we construct a path connecting
it with a larger picture-frame and a path connecting it with a smaller
picture-frame. We will see that the picture-frame is in Ma if and only if the
latter path has smaller cost with respect to the former one.

• We call preferred growth path the following path connecting the
picture-frame with a larger picture-frame:

1a) The first step consists in making a zero unit-square protuberance
on the longest side of the frame (see Fig. 9 ). The cost is c0.

1b) We continue by filling with zeroes the side to which the protu-
berance belongs. This part of the path is downhill, the energy gain is
j0(L++2).

1c) Now having room enough, we form a plus unit-square protu-
berance at cost c+.
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Fig. 9. Preferred growth path.

1d) We end up by filling with pluses the side to which the protu-
berance belongs. Again, this is downhill.

The maximum of the energy in the preferred growth path is either
reached in 1a) or in 1c), the cost being

Eg :=c0+[c+−j0(L++2)]+ (6.16)

• We construct the preferred contraction path in a similar way:

2a) the first step is the erosion of the first l+−1 sites of one of the
smallest sides of the rectangle of pluses (see Fig. 10), at a cost j+(l+).

2b) then, we erase the last site following a downhill path with energy
gain c+.

2c) we erode the first l++1 sites of one of the smallest sides of the
rectangle of zeroes at cost j0(l++2) (while continuing the erosion of the
rectangle of pluses has higher cost since, for relevant picture-frames with
l+\ h

l , j0(l++2) \ j+(l+)).

2d) finally, we erase the last site in the side following a downhill path.

Fig. 10. Preferred contraction path.
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The maximum of the energy in the preferred contraction path is either
reached in case 2a) or in case 2c), the cost is

Ec :=j+(l+)+[j0(l++2)− c+]+ (6.17)

By direct computation we see that

Ec < EgZ l+< f(L+) (6.18)

Indeed, the condition

c0+c+−j0(L++2) > j+(l+) (6.19)

can be expressed in terms of lengths: it is equivalent to

l+< m*(L+)=L̃+
h−l

h+l
(M̃−2−L+) (6.20)

Note that m*(M̃−2)=L̃, while m*(a*)=a*. Figure 11 a) and b) displays
the regions where condition (6.18) is valid if M̃−2 > a* or M̃−2 [ a*,
respectively (note that the region M̃−2 [ a* is not studied in [CiO]). It is
easy to show that the cycle B containing g and with energy smaller than
H(g)+min {Ec, Eg} has F(B)={g} and contains at most another local
minimum, namely a birectangle strictly smaller than g. Notice that, since
l+> L* we always get F(B)=g. We refer to [CiO] (where B̄ is studied
both for picture- frames and for birectangles) for details. By looking at
Fig. 11, we note that (for non-squared picture-frames) the preferred growth
path is parallel to the ordinate axis (l+) while the preferred contraction
path is parallel to the abscissa axis (L+). Hence, property (6.18) can be
iterated until reaching a wrapping minimum or an irrelevant picture-
frame.

Fig. 11. The contraction path cost is smaller than the growth path cost in the whole region
l+< f(L+) — min{a*, max{L̃, m*(L+)}}.
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In the case l+< hl , B(g) can contain many birectangles. This fact can
be easily shown by observing that instead of step 2c) in the preferred con-
traction path it is convenient to continue shrinking the rectangle of pluses.
Obviously, all birectangles we can reach in this way are in Ma. Moreover
for any of these birectangles, from (6.15), (6.4), (6.5), (6.6), we get
c0 > j0(l0(zk))=j+(l+(zk))−2l(l+(zk)−

h
l ) > j+(l+(zk)) > c+. There are

two possibilities: either the path obtained by iterating this procedure can
reach a rectangle of zeroes with a cost smaller than j0(l0) or it is more
convenient to shrink the zeroes by following the preferred growth path (it is
immediate to see that the paths erasing the zeroes after having erased more
than one row of the rectangle of pluses have higher cost). In any case, we
exit from B(g) without creating new non-minuses so that G(B(g)) < c0 and
S(B(g)) is downhill connected to a smaller relevant minimum. Hence, the
construction can be iterated until reaching a rectangle of zeroes or an
irrelevant picture-frame.

Other birectangles. We take B(g) :=B̄(g). It has been shown in
[CiO] that S(B̄(g)) can be obtained by one of the following procedures: i)
by setting to zero all but one of the spins on one of the shortest sides of the
rectangle of pluses (at cost j1(l+)), ii) by setting to minus all but one of the
spins on one of the shortest sides of the rectangle of zeroes (at cost j0(l0)),
iii) by adding a plus unit-square protuberance to the rectangle of pluses (at
cost c+) and, finally, iv) by adding a zero unit-square protuberance to the
rectangle of zeroes (at cost c0). Notice that only in the latter case S(B̄(g))
is downhill connected with a minimum where the number of minuses
decreases (what we call a birectangle larger than g).

• In the region h > l > 0, we show that there exists a sequence of
birectangles {gk}, that starts from g and ends in a relevant minimum, such
that S(B̄(gk)) is downhill connected with gk+1. The construction of this
sequence requires the analysis of a few very similar cases. We report in
Table 1, the starting birectangle vs. the ending relevant minimum, the
minimum cost of a path reaching this relevant minimum and the total cost
of the contraction to minus namely, the minimum cost of the path leading
from g to −1. The last column of Table 1 reports the condition under
which the ending relevant minimum is in G. Notice that (by condition 2.
and 3. in the definition of Ma) the relevant minimum is in Ma if and only if
g ¥Ma.

We observe that in the case l+< L* the final picture-frame is always
in G; in the case l+\ L*, max {l0, L++2} < M̃ it is in G if and only
if l+< f(L+); the case l+\ L*, l0 < M̃ < L++2 it is in G if and only if
l0 < f(L+)+2; finally, in the case l+\ L*, l0 \ M̃ it is in G if and only if
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Table 1

Starting Relevant Cost of the Total cost of Subcritical
birectangle minimum rel. min. w: R(L0, l0, L+, l+)Q −1 condition

l+< L* rectangle
j+(l+) [ j0(l0) L0×l0 j+(l+) j0(l0) always

L+< L*
j+(l+) > j0(l0) −1 j+(l+) j+(l+) always

l+\ L*
M̃ > l0 > L++2 F(L+, l+) j0(l0) j+(l+) l+< f(L+)

l+\ L*
M̃ > L++2 \ l0 F(L+, l+) j0(L++2) j+(l+) l+< f(L+)

l+\ L*
L++2 \ M̃ > l0 F(L+, l0−2) c+ j+(l+) l0 < 2+f(L+)

l+\ L*
l0 \ M̃ F(L0−2, l0−2) c+ j+(l0−2)+j0(l0)− c+ l0 < 2+f(L+)

l0 < f(L0−2)+2=a*+2=f(L+)+2. In the last inequality, we used the
fact that M̃ < m*(L+)+2 entails L+< M̃−2. As an example, we restrict
ourselves to the discussion of the most complicated among the growth and
contraction mechanisms leading from a birectangle to a picture-frame: let
us consider a birectangle such that l+\ L* and L++2 \ M̃ > l0 (fifth row
in Table 1). It can reach F(L+, l0−2) at cost c+. Indeed, we take
gk :=R(L0−k, l0, L+, l+). S(B̄(gk)) is obtained by setting to minus all but
one the sites of one of the shortest sides of the rectangle of zeroes. The
depth of B̄(gk) is j0(l0) < c0. This sequence ends in R(L++2, l0, L+, l+).
We continue by taking gK+k :=R(L++2, l0, L+, l++k), where
K :=L0−L++2. In this case, S(B̄(gK+k)) is obtained by adding a unit-
square protuberance to one of the shortest sides of the rectangle of pluses
(there is no room to add it to one of the longer sides without creating a
direct interface minus-plus). The depth of B̄(gK+k) is c+ < c0.

• The case h \ −l > 0, easily leads back to the case l+< L* for
h > l > 0. Indeed, if l < 0 and l0 <M* then l+< L*. The contraction cost
is max {(j0(l0), j+(l+)}.

Families of birectangles. The key observation is that if we sequen-
tially shrink all birectangular droplets in g following the above defined
pattern, we never form new non-minuses. Hence, following this path, dis-
tinct droplets never interact so that we can construct a sequence of minima
{gk} ending in −1 and a sequence of cycles B(gk) in G with S(B(gk))

1066 Manzo and Olivieri

File: KAPP/822-joss/104_5-6 342342 - Page : 38/62 - Op: DS - Time: 12:48 - Date: 13:08:2001



downhill connected to gk+1 and C(B(gk)) < c0. Thus, a configuration made
of birectangles is connected to −1 at cost smaller than c0 if all birectan-
gular droplets in the configuration are in G.

Families of plurirectangles. In all the cases considered, Y(g)=g. The
case of plurirectangles is slightly less straightforward. If j0(l0(g)) > c1 the
argument is the same as the one we used for birectangles: we find a
sequence of minima with the usual properties that goes from the starting
configuration g to Y(g). If j0(l0(g)) [ c1, it would be natural to shrink first
the rectangles of zeroes (until we possibly reach a ‘‘hard core’’ of pluses).
We leave to the reader the task of showing that there is no difference
between the final configurations obtained by this procedure and by Y.

Since -g ¥ G we find a path w: g Q −1 with a cost smaller than c0,
then G(G) < c0. L

In the following Lemma we describe S(G). The shape and the energy
of the saddles coincide with that of the dynamics in [CiO]; this is the most
direct way to show that the two dynamics are equivalent.

We call candidate saddle one of the following configurations:

P1: A rectangle KM*L×(KM*L−1) with a zero unit-square protu-
berance attached to one of the longest sides.

Fig. 12. Candidate saddles.
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P2: A frame F(KM̃L, KM̃L−1) with a zero unit-square protuberance
attached to one of the longest sides.

P3, a, : A square (Ka*L+2)×(Ka*L+2) of zeroes containing in its interior
a rectangle Ka*L×(Ka*L−1) of pluses and a plus unit-square protuberance of
this rectangle.

P3, b: A rectangle (Ka*L+2)×(Ka*L+1) of zeroes containing in its
interior a square (Ka*L−1)×(Ka*L−1) of pluses and a plus unit- square
protuberance of this square.

Lemma 6.2. S(G) …P3, a 2P3, b 2P1 Moreover, the energy gap
between S(G) and −1 is C À defined in (2.18).

Proof. We start showing that S(G) …P1 2P2 2P3, a 2P3, b Direct
computation shows that the minimum of the energy of these configurations
can only be achieved in P1, P3, a or P3, b.

Let g \ gŒ be two local minima. By definition of Ma, if g ¥Ma then
gŒ ¥Ma, while if gŒ ¥M0Ma then g ¥M0Ma.

Let ĝ ¥S(G) and let g ¥ G be a nearest neighbor configuration of ĝ

differing from it for the spin in x, namely ĝ=ga, x.
We denote by f: SQM the map defined in the following way: given

t ¥ S, we consider the set I+ of the pluses in t and fill with pluses the
bootstrap of this set; then we set to zero all the minuses neighboring the
new set of pluses and finally, we set to zero the minuses inside the boots-
trap of the resulting set of zero-pluses. It is immediate to show that every
t ¥ S is downhill connected with f(t). Moreover, f(t) is greater (in the
sense of (2.10)) than any other configuration to which t is downhill con-
nected. Otherwise, let z=f(t) and let wk=wb, yk−1 be the first configuration
in a downhill path starting from t where there exists a site y with
wk(y) > z(y); by the monotonicity of hŒ appearing in (2.9), we would
immediately get 0 \H(wk)−H(wk−1) \H(zb, y)−H(z) contradicting the
hypothesis that z is a local minimum. Hence, a sufficient condition in order
to have t ¨ G is f(t) ¥M0Ma. Also, g=f(g) ¥Ma, because [f(g)]a, x \ ĝ

imply [f(g)]a, x ¨ G (as f([f(g)]a, x) \ f(ĝ) ¨ G), while g < f(g) would
imply H(f(g)) < H(g) and, by the monotonicity of hŒ, H([f(g)]a, x) <
H(ĝ) contradicting the hypothesis that ĝ ¥S(G).

We call relevant structure a droplet in the shape of a rectangle of
zeroes or of a birectangle with the smallest side-length of the rectangle of
pluses larger than L*.

There are two cases: either ĝ(x)=+1 or ĝ(x)=0.
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1. ĝ(x)=0. Since g ¥Ma, we observe that there is no downhill path
changing the set I+ of the pluses. Hence, the map f only consists in setting
to zero the minuses inside the bootstrap of the non-minuses.

(a) In case g contains many droplets, we use the same argument
introduced in [KO]: since the bootstrap procedure is associative with
respect to the set union, we can add to x the droplets one by one. We end
with two interacting subcritical droplets (see [KO] for details). Since the
energy of f(ĝ) is larger than the sum of the energy of the droplets, g can
only be made of two droplets. Moreover, since the rectangles of pluses are
not affected by f, and since rectangles of pluses with l+< L* are irrelevant
for determining if g is in Ma but their presence increases the energy, it is
clear that they cannot be present in g. With a similar argument we can
conclude that the droplets are in fact relevant structures. Still, these rele-
vant structures are ‘‘subcritical’’ meaning that a configuration obtained
from g by cutting down one of the longest sides of the structure has energy
smaller than H(g). With an argument very similar to the one used in [KO]
for the Ising case, we can easily conclude that f(ĝ) is ‘‘just supercritical,’’
meaning that either l0(f(ĝ))=KM*L or l0(f(ĝ))=KM̃L, i.e. a birectangular
droplet that can be turned into a subcritical relevant structure by cutting
down one of the longest sides. It was shown in [CiO] that among the con-
figuration ĝ containing two subcritical relevant structures that give a
certain f(ĝ), the one with smaller energy is given by a birectangle with zero
unit-square protuberance attached.

Direct computation allows to show that all configurations in the shape
of a birectangular droplet with l+< f(L+) with a zero unit-square protu-
berance have higher energy w.r.t. the candidate saddle P2 while all config-
urations in the shape of a rectangle of zeroes such that l0 <M* with a zero
unit-square protuberance have higher energy w.r.t. the candidate saddle P1.
Thus, g cannot contain more than one droplet.

(b) In case g consists of a single droplet, we can use the same rea-
soning of case 1a) and show that among such configurations the minimum
of the energy is achieved either in P2 or in P1.

2. ĝ(x)=+1.

(a) In the case there are no direct interfaces in ĝ(x), we have
ĝ=g1, x for some local minimum g and some x in the interior of a rectangle
of zeroes in g; hence, is easy to see that there are no downhill paths creating
a zero from a minus. The absence of direct interface and ĝ ¥ U(G) also
imply that g consists of a single rectangle of zeroes containing rectangles of
pluses in its interior. Let l0 and L0 be the sidelengths of the outer rectangle
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of zeroes. We observe that the energy of such a configuration can be
computed as the sum of the energy formation of the rectangle l0×L0 full of
zeroes in the sea of minuses plus the energy formation of the rectangles of
pluses in the sea of zeroes. With an argument similar to the one used in
case 1a), we can conclude that the shape of pluses inside the rectangle of
zeroes must be a rectangle (Kf(L+(f(ĝ)))L−1)×L+ with a single unit-
square protuberance and that l0(f(ĝ))=Kf(L+(f(ĝ))L+2, L0(f(ĝ))=
L+(f(ĝ))+2. It is easy to see that among such configurations the one with
lower energy is a candidate saddle P3, a, or P3, b (see proof of Lemma 6.1).

(b) A configuration with a direct interface cannot be in S(G):
indeed, let e(x) be the set of minuses neighboring x in ĝ. Let ĝŒ be the con-
figuration obtained from ĝ by setting to zero all sites in e(x). Clearly,
H(ĝŒ) < H(ĝ) while ĝŒ > ĝ. Hence ĝŒ ¨ G. It is easy to see that the cost of
the path going from g to ĝŒ is lower than the cost to go to ĝ and, hence,
ĝ ¨S(G).

Direct computation shows that the minimum of the energy of the candidate
saddles has the form (2.18). L

We prove in the next Lemma the last requirement of the constructive
criterion of Olivieri and Scoppola.

Lemma 6.3. S(−1, À )=S(G)

Proof. Having proved in Lemma 6.1 and in Lemma 6.2 the first two
requirements of the criterion introduced in [OS], we have now to show
that there always exists a path w:S(G)Q À with H(t) < H(S(G))
-t ¥ w0S(G). It is easy to show, with the methods of the proof of Lem-
ma 6.1, that there always exists an Ising-like path wŒ: P1Q À with energy
smaller than H(P1). This is not the case for P3, a and P3, b. Indeed, if
a* < l+< L*, such a path does not exist neither for P3, a, nor for P3, b.
However, the region a* < L* is well inside the region where S(G)=P1.
Indeed, direct computation shows that

min {H(P3, a), H(P3, b)}=−2h Ka*L 2+4c0Ka*L+2c0

+min {(h+l)(Ka*L−1)+2c0, h(3Ka*L−2)+l(Ka*L+2)}

\ −2h Ka*L 2+4c0Ka*L+2c0=2c0a*+2c0−2h d2
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where d :=Ka*L− a*. On the other hand, if a* < L*,

H(P1)=−(h−l) KM*L 2+(4+h−l) KM*L−(h−l)

=c0M*−(h−l)(1−d+d2) [ c0M* [ c0(a*+2)

< 2c0a*+2c0−2h d2

where in the second-last inequality we used a* < L*S a* >M*−2.
We can then use the construction used in Lemma 6.1: for ĝ ¥S(G),

we set g1 :=f(ĝ). Than, we take the set Bk(gk) as the largest metastable
cycle having F(Bk(gk))=gk and gk+1 :=f(gk). Coming back to (6.16) and
(6.17), the fact that the shape of the saddle is P3, a or P3, b imply that
Eg [ Ec for all gk and thus gk+1 > gk. We can iterate this procedure until we
reach a wrapping configuration and, after that, we can easily find a path
leading to À at a cost smaller than c0. L

We end up our analysis with the following key Lemma relating the
energy landscape with dynamical aspects:

The following result concerns the finite-volume process s̃Q, t defined in
(6.2) as the restriction to the maximal subcritical cycle introduced in (6.1).
We recall that Q is the square of side-length 2D+1.

Lemma 6.4. Let ỹQ−1 :=min{t : s̃Q, t=−1} and G* :=G(G) \ G(A).
Let g be a configuration in the cycle A.
For all sufficiently large D, there exists c such that -e > 0

Pg(ỹ
Q
−1 < e

b(G*+e)) [ e−ce
be

(6.21)

Proof. Let g be a generic configuration in the maximal subcritical
cycle A. The probability that the process starting from g reaches a local
minimum gŒ within time 1 undergoing a downhill transition is larger than a
constant.

By the definition of G* and Proposition 3.7 in [OS2], the probability
of reaching −1 after time ebG* is uniformly bounded by a constant e−c for
any starting configuration gŒ ¥A.

We divide the time interval eb(G*+e) into smaller intervals of length ebG*

and use the Markov property:

Pg(ỹ
Q
−1 > e

b(G*+e)) [ (sup
gŒ ¥A

PgŒ(ỹ
Q
−1 > e

bG*))e
be

[ e−ce
be

L (6.22)
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6.2. Infinite Volume

We want to first remark that the dynamics used in the present paper
and the one of [CiO] have the same speeds of growth (see (2.20), (2.21));
this fact, together with the finite-volume results of the previous subsection,
suggest that the two dynamics share the same behavior also at infinite
volume.

In this Section T :=ebk with k < k0. For simplicity, we also assume
k > c0 (note that k0 > c0).

We will follow the scheme of the proof of the Theorem in [DSch2].
First, we will show (Lemmata 6.5, 6.6) that nucleation is a local phenome-
non, i.e. if it takes place with the infinite volume dynamics, it must also
take place for the process restricted to one of the squares of suitable finite
side-length and periodic boundary conditions. This will allow us to use the
finite-volume estimates in Lemmata 4.1 and 6.4. Then we use Lemma 6 in
[DSch2] to show that the coalescence between supercritical droplets, does
not change the asymptotic behavior of y À . Using the argument of [DSch2]
on the existence of a ‘‘chronological path,’’ we will estimate from above the
speed of growth of a supercritical droplet by e−b c0/2, showing that, with
high probability, the origin cannot be À-infected within T.

Lemma 6.5. Let L1 … L2 … Z2. If ,x ¥ L1 such that sL1; t(x) ]
sL2; t(x), then C À

x, t(sL2, t) 5 Lc1 ]”, That is, there exists a space-time cluster
that connects (x, t) with (Lc1, 0).

Proof. Ab absurdo, let s=ta, bx be the first time in which the
hypothesis is satisfied but the thesis is not. Let s− < s be sufficiently large
(such that there are no spin flips between s− and s). At time s− none of the
nearest neighbors of x can be À-connected with Lc1, otherwise (x, s) would
also be À-connected with Lc1. Since x is the first site not À-connected with
Lc1 whose spin is different in the two dynamics, it follows that x as well as
all its nearest neighbors have the same spin in both processes. Hence, the
rates for the site x are the same in both processes, but this is absurd since it
contradicts the assumption that at time s the two processes differ. L

The following key Lemma allows us to reduce nucleation to a finite
size phenomenon, saying that, at times shorter than T, if nucleation
does not take place, then there are no space-time clusters wider than a
constant DŒ.

Lemma 6.6. Let ȳQ> D :=min{t : ,C À (s̄Q, t) with |C À (s̄Q, t) | > DŒ}
and

ȳQnucl :=min{t : s̄Q; t ¥ “+A} (6.23)
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Then

P(ȳQ> D <min{ȳQnucl, T}) [ e
−2bk0 (6.24)

for D and DŒ large enough.

Proof.

P(ȳQ> D <min{ȳQnucl, T}) [ P(ỹQ> D < T) (6.25)

where ỹQ> D :=min{t : ,C À (s̃Q, t) with |C À (s̃Q, t) | > DŒ}
Lemma 6.4 claims that starting from every configuration s ¥A, the

probability that s̃ stays out of −1 for a time eb(G*+d) tends to zero
superexponentially fast for any d > 0.

On the other hand, in order to form a space-time cluster of width
larger than DŒ, it must happen either at least DŒ/2 times that a minus site
changes to zero when it has at most one nearest neighbor zero, or at least
DŒ/4 times that a direct interface −1, 1 is formed. Therefore, it must
happen at least DŒ/4 times that a Poisson clock with rate 1 rings before
eb(G*+d) and that a random variable uniformly distributed in [0, 1[ is
smaller than e−bc0. It follows that

P(ỹQ> D < T) [ TD
2(e−bc0eb(G*+d))DŒ/4 [ e−2bk0 (6.26)

for sufficiently large DŒ, and small d. L

The following Lemma estimates the nucleation probability in L0 by
using the finite volume results of Lemma 6.4 and the locality results of
Lemma 6.6. We recall that yL

0

LECE was defined in (2.36).

Lemma 6.7. Let ȳL
0

> D :=min{t : ,C À (s̄Q, t) with |C À (s̄Q, t) | > DŒ}.
- d > 0

P(min{ȳL
0

> D, y
L
0

LECE} < T) [ e
−b(k0−k−d) (6.27)

Proof. By Lemma 6.5, the configuration inside a square Q* :=Q(DŒ)
can only be influenced by a suitable space-time cluster. Lemma 6.6 states
that (with overwhelming probability) for subcritical configurations, this
space-time cluster is smaller than DŒ. Hence, having a nucleation or a large
space-time cluster in L0 implies a nucleation or a large space-time cluster in
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the dynamics restricted to one of the translates of Q :=Q(5DŒ) for the
process s̄Q+x, t.

P(yL
0

LECE < T) [ |L
0 | (ȳQnucl [ T)+P(ȳQ> D <max{ȳQnucl, T})) (6.28)

[ e2b(k0− c0/2)(e−b(C À −k−d/2)+e−2bk0) (6.29)

and then the thesis. L

The following Lemma states that with large probability the droplet
that infects the origin does not come from too far.

Lemma 6.8. -t [ T,

P(st(0) ] sL̄; t(0))Q 0 (6.30)

Proof. The proof is standard: it is a large deviation estimate based
on the fact that the growth speed is at most 1 (we recall that
L̄ :=Q(ebk0)). L

Proof of Proposition 1 part a). In order to prove Proposition 1, we
will first make use of the result of Lemma 6 in [DSch2] to show that the
origin is not infected by a large- scale coalescence phenomenon; then, we
will show that it is also very unlikely that the origin is infected by the
growth of an isolated droplet.

The bootstrap procedure defined in Subsection 2.8 will be used to
estimate the possible effects of the coalescence of supercritical droplets.

Let L0j :=Q(3e
b(k0− c0/2))+j(1+2Neb(k0− c0/2)M), with j ¥ Z2. The L0j are

partially overlapping squares covering L̄. Following [DSch2], we define a
process on the rescaled lattice of side-length equal to the side-length of L0:

nj :=I{min{yL
0
j
LECE} [ T} (6.31)

In the finite volume L̄, we apply the bootstrap procedure on the pluses in n

and obtain the configuration

v=B+(n) (6.32)

By taking the results of Lemmata 6.7 and 6.8, we can use Lemma 6 in
[DSch2] (that is a variation of the Theorem in [AL] to include finite range
of dependence) and conclude that

P(v0=1)Q 0 (6.33)
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The physical meaning of (6.27) and (6.33) is that the zero-pluses can neither
be created inside L0 nor come from the outside because of the coalescence
between supercritical droplets. Indeed, we will show that when starting
from a configuration with pluses in the whole region where vj=1, it is very
unlikely that supercritical droplets can coalesce. To conclude the proof of
Proposition 1 part a), we need to estimate the speed of growth of an
isolated droplet, that could possibly be increased by the coalescence with
subcritical droplets. This typical speed will turn out to be so small that
neither the growth of an isolated supercritical droplet can reach the origin
nor the coalescence of supercritical droplets into L̄ can take place.

Let D :={x ¥ Z2 such that vj=1, for any j such that x ¥ L0j} and
Da :={y ¥ Z2 such that ,x ¥D with ||x−y|| [ 1

3 (1+2Ne
b(k0− c0/2)M)}.

We call r the configuration on the original lattice induced by v in the
following way: r(x) :=+1 if x ¥D, r(x) :=0 if x ¥ “+D, r(x)=−1
otherwise.

Following again [DSch2], we define, on the probability space of the
Poisson times, the process

tt :=srL̄; t (6.34)

Since it uses the information at time T, this process is clearly non-Markov.
From the first of (2.14), it follows that

tt \ sL̄; t (6.35)

The idea behind this process tt is that all supercritical droplets were
previously considered in r; since the distance between such droplets is at
least eb(k0− c0/2), with high probability they can only coalesce with subcritical
droplets before leaving Da . By Lemma 6.6, these subcritical droplets can at
most measure DŒ.

Let us consider the picture-frame envelope (see Fig. 5) of the section at
time s of a space-time cluster.

Consider the only supercritical droplet D0(x) …D at a distance
1
3 e
b(k0− c0/2) from x and the section Dt(x) at time t of its space time cluster

C À
x0, 0(t, t), where x0 ¥D0(x).

The key argument of the proof is that all three possible growth
mechanisms that cause the cluster to exit the picture-frame envelope (i.e. by
creation of unit-square protuberances of zeroes inside the minuses, by
creation of a direct interface minus-plus and by coalescence with subcritical
droplets) have finite range in the sense that they give rise to a maximal
growth of 1, 2 or DŒ, respectively . Indeed, the argument used in Lemma 8
in [DSch2] allows to claim that if y ¨Dt(x) and the distance between y
and D0(x) is smaller than 1

3 e
b(k0− c0/2), then |C À

y, t(t, t) | [ DŒ.
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We call special point a space-time point (x, t) having one of the
following characteristics:

1. st(x) changes from minus to zero having only one neighbor zero,

2. st(x) changes increasing the length of the direct interface minus-
plus,

3. C À
x, t− e(t, t) (for sufficiently small e) becomes connected to a

supercritical droplet at time t because of the spin change on a different site
(closer than DŒ+1 to x).

Let x be the first site outside Da that becomes non-minus and let aF be the
unitary vector, parallel to one of the axes, such that ||x−y||=
1
3 (1+2Ne

b(k0− c0/2)M) for some y ¥D0 (it is clear that it is sufficient to consider
sites for which aF is unique because a corner in Da cannot be the only first
site in “D becoming non-minus).

We call chronological path a sequence of space-time points (xi, ti) such
that tti(xi) ] −1, ti+1 > ti and 0 < (xi−xi+1) ·aF [ 2DŒ+1.

It is easy to see the existence of a chronological path made of special
points connecting x with D0. Indeed, it is possible to number all special
points involving advancing along aF: tk+1 is chosen as the first time after tk
such that (xk+1, tk+1) is a special point with (xk+1−xk) ·aF > 0. In this way,
the modulus of the projection along aF of the vector joining two consecutive
points is smaller than 2DŒ+1. Indeed, if Dtk+1 is not contained into the
picture-frame envelope of Dtk, then there must be a special point in the
appropriate direction. The resulting chronological path {(x0, t0), ...,
(xn, tn)} has xn=x, x0 ¥D0(x), n \N :=Ceb(k0− c0/2).

By using a finite speed argument, it is easy to show that with large
probability one of these paths must have tn [ CŒT.

In order to give a bound on the probability of following within time T
a chronological path with given sites, we split the estimate into two cases:
either there are more than N/2 special points of kind 1) and 2) in the
chronological path, or there are more than N/2 special points of kind 3).

The first case is a standard large deviation estimate: since the
minimum rate for special points of kind 1) and 2) is e−bc0, the probability of
following the chronological path is lower than

1C'e−bc0T
N
2N/2 (6.36)

The second case of many subcritical droplets is more complicated. Let
{(xki, tki)}i be the sub-path of points of kind 3).

We split the proof in two cases:
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a) more than N/4 points are such that tki > tki−1;

b) more than N/4 points are such that tki=tki−1.

Case a) is again a large-deviation estimate: Lemma 6.5 gives the indepen-
dence among the points in the sub-path, while the formation rate of an
isolated zero in the minuses is e−b(4−h+l). Hence, the probability of case a)
can be bounded as

1e−b(4−h+l)T
N
2N/4 (6.37)

The probability of case b) can be estimated as

(e−b(4−h+l− e))N/4 (6.38)

where e is an arbitrarily small constant. Indeed, (as a consequence of
Lemma 6.5) the probability that at time tki there exists in Q+xki+1 a space-
time cluster smaller than D for the process tt is bounded by
P−1(s̃Q; t ] −1).

As usual, the probability of the event {s̃Q; t does not visit −1 for a
time ebc0} tends to zero superexponentially fast.

We split the event {,s < ebc0 : {s̃Q; t=−1} 5 {s̃Q; t−s=−1}}, into two
cases: either the process exits the strict basin of attraction of −1 or not.

The probability of the first event can be immediately bounded by
e−3bc0. To estimate the second case, we use the fact that the probability that
the process does not visit −1 for a time ebeŒ tends to zero superexponen-
tially fast. Since the probability that the process exits form −1 in a time ebeŒ

can be bounded by e−b(4−h+l− e), we can put together the four cases and get
the bound P−1(s̃Q; t ] −1) [ e−b(4−h+l− e).

The sites of chronological paths with xn=x, x0 ¥D0(x), with n \N,
tn [ CŒT and containing at least N/2 special points of a given kind can be
arranged in no more than

T 1CŒT
N
2N/2=T(Ce−b(k0−k− c0/2))N/2 (6.39)

ways (see [KeSch] and [DSch2] for details).
We can conclude the proof of Proposition 3.1 case a) by multiplying

(6.39) by the sum of (6.36), (6.37) and (6.38) and by | “+Da | [ | L̄ | :

P(y À < T) [ T(Ce−b(k0−k)eb(c0/2))N/2 (Ce−b(k0−k− c0/2))N/2 (e2bk0)

+P(v0=1)Q 0 (6.40)
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7. PROOF OF PROPOSITION 3.1) CASE b) (RELAXATION TO À )

In this Section T=ebk with k > k0. For sake of simplicity, we also
assume k < C À . Indeed, the proof of Proposition 1 case b) is immediate for
k \ C À since a finite-volume relaxation mechanism is active on this scale of
time.

The strategy of the proof will be the following: first, we extend the
finite volume estimates of [CiO] to times much shorter than the character-
istic nucleation time ebC À by using Lemma 4.3. In Lemma 7.1 we prove
that there must be in L0 a site x such that there is a nucleation before T for
the process sQ+x; t; then, in Lemma 7.2 we will prove that with overwhelm-
ing probability the À-infection process is irreversible. Eventually, we will
use the estimates on the spreading speed of the À-infection obtained in
Lemmata 7.3 and 7.4, in a construction similar to the one used in Lemma 1
in [MO] to show that a ‘‘non-minus’’ droplet is likely to infect the origin
within T.

Let us now consider sQ+x; y. Since D is large enough, we see that the
saddle between −1 and À with minus boundary conditions has the same
shape and energy C À as the critical droplet with periodic boundary condi-
tions.

Similarly, it is possible to prove that the largest inner resistance of the
largest cycle containing −1 and not intersecting À is lower than or equal
to the resistance G* < c0 that we have with periodic boundary conditions.

By using Proposition 3.7 in [OS] and Lemma 4.3, we get

P(y̌ À
1 (x) < T) \ e

−b(C À −k+d) (7.1)

for sufficiently large b.

Lemma 7.1. Let L̂ :=L(12 e
b(k0− c0/2))

P(min
x ¥ L̂

y̌ À
1 (x) < T)Q 1 (7.2)

Proof. We tile L̂ with squares of the form Q+(2D+3) j and use the
first inequality in (2.14) to set minus boundary conditions. We get

P(min
x ¥ L0

y̌ À
1 (x) < T) \ 1−(P(y̌

À
1 (x) > T))

ce2b(k0− c0/2) \ 1−e−Ce
b(k−k0+d)

L

(7.3)

The following key Lemma represents the irreversibility of the À-
infection process.
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Lemma 7.2. Let E be the event {minx ¥ L0(ŷ
À
1 (x)) \ e

b(k0+k+)}. We
have:

P(E)Q 1 (7.4)

Proof. We can give the estimate of ŷ À
1 (x) by considering an initial

condition without minuses (we recall that, by definition, ŷ À
1 (x) > y̌ À

1 (x)).
We take advantage of the fact that the À-infected configurations have a
finite probability of reaching a configuration without minuses within time
1. Let us consider the process sQ+x; t restricted to Q+x with minus bound-
ary conditions. When starting from a configuration having at most D/3
minuses, there is always a downhill trajectory that erodes the minus
droplets from the corners by substituting the minus spins with zeroes. The
probability that the time elapsing between the last visit to ‘‘non-minus’’ and
ŷ À
1 is larger than eb d is super-exponentially small in b (see e.g. proof of

Lemma 4.3).
On the other hand, there is no downhill path creating minuses outside

the region spanned by the bootstrap of the minuses (see Fig. 8). Then, in
order to create D/3 minuses, the process must go against the drift at least
1
3`D/3 times. Indeed, let w: À Q g, where g contains more than D/3
minuses. We extract a path wŒ from w, by picking out the moves increasing
the total number of minuses.

Let Ng be the sum of the largest sides of the rectangles in the set
obtained by the bootstrap of the minuses.

Since every minus added with energy gain does not increase NwŒk
while

a minus added with energy loss can at most increase NwŒk
by 3, it is easy to

prove that at least 13 K`(D/3) L moves against the drift are needed to create
D/3 minuses.

Hence, it must happen at least 13`D/3 times that a Poisson clock
with rate 1 rings within eb d and that a random variable uniformly distrib-
uted in [0, 1] is smaller than e−bc0. It follows that

P(y̌ À
1 (x) < e

b(k0+k+)) [ Ceb(k0+k+)(e−b(c0−d))1/3`D/3 [ |L0 | −1 e−b dŒ (7.5)

for sufficiently large D.
Multiplying by |L0 | , we get the thesis. L

The following Lemmata 7.3 and 7.4 estimate the spreading speed of
the À-infection. These results will be used in the proof of Lemma 7.5.

Lemma 7.3. Let

z2(x) :=y̌ À
1 (x)−min {t : ,y, yŒ with y ] yŒ;

||x−y||=||x−yŒ||=1 and y̌ À
1 (y) [ t, y̌

À
1 (yŒ) [ t} (7.6)
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be the time needed to À -infect the site x, once it has two À -infected
neighbors.

Let

E2 :={-x ¥ L0, z2(x) < e2b d} (7.7)

Then, - d > 0, for large b,

P(E 5 E2) \ 1−e−e
b d

(7.8)

Proof. We use the same argument we used in the proof of
Lemma 6.6.

It is clear that once x has two À-infected neighbors, E implies that
before eb(k0+k+) the number of minuses into Q+x is at most 23 D+1.

By using the definition of y̌ À
1 and the first inequality in (2.14), we can

restrict ourselves to considering the process sgQ+x; t with the initial condition
g containing at most 23 D+1 minuses.

Again, the probability of staying out of local minima for a time eb(d/2)

is superexponentially small in b:
By Proposition 3.7 in [OS],

P({y̌ À
1 (x) > s+e

b(d/2)} 5 E) [ e−c (7.9)

By using the Markov property, we get

P({y̌ À
1 (x) > s+e

2b d} 5 E) [ e−ce
3b/2d

(7.10)

in a standard way.
By multiplying (7.10) by the number of sites and by e2b d, we get the

thesis. L

Lemma 7.4. Let us consider the sub-lattice ZŒ2 :=(3DZ)2 of side-
length 3D.

Let A :={Ai}i be a partition of L0 5 ZŒ2 into sets Ai.
Let

z1(i) :=min
x ¥ Ai
(y̌ À
1 (x)− min

yx : ||x−yx||=1
y̌ À
1 (yx)) (7.11)

E1(i) :=3z1(i) <
eb(c0+2d)

| Ai |
4 (7.12)
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and

E1 :=3
i
E1(i) (7.13)

Then, - d > 0, for large b,

P(E 5 E1) \ 1−e−e
b d

(7.14)

Proof. Again, we use minus boundary conditions to get the bound
we need: this gives independence among the À-infection times in the sites
in ZŒ2.

After the infection of one of the neighbors of x, E implies that the
number of minuses in Q+x is at most 43 D. We can therefore consider an
initial condition such that the number of minuses in each Q+x is at most
4
3 D.

Since the energy gap with a configuration without minuses is at most
c0 (i.e. the energy of a zero unit-square protuberance in the only row or
column possibly full of minuses), we can use Lemma 4.3 with G=0:
-x ¥ Ai, -t [ eb(k0+k+)

P((y̌ À
1 (x) < t) | E) \ te

−b(c0+d) (7.15)

thus

P({min
x ¥ Ai

y̌ À
1 (x) > t} | E) [ (1−te

−b(c0+(3d/2))) | Ai | [ e−te
−b(c0+(3d/2)) | Ai | (7.16)

If t=eb(c0+d)/ | Ai | , multiplying by |L0 | we get the thesis. L

We can now use the shell construction used in [MO] to prove
Lemma 7.5.

This Lemma exhibits a growth mechanism by squares of ‘‘non-
minuses.’’ This takes place at speed e−bc0 until the droplet reaches the criti-
cal size of eb(c0/2) and afterwards at speed e−b(c0/2).

The fact that this mechanism infects the origin within time T, con-
cludes the proof of Proposition 1, b). The result will also be used in the
proof of Proposition 1, d).

Lemma 7.5. Let us consider an initial condition without minuses
inside Q+x for a site x in L(12 e

b(k0−(c0/2))).
LetM> c02 , L :=NebMM and k(M) :=M+c02 ; then -kŒ > k(M)
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Then, in the event E 5 Ec1 5 Ec2 we have

max
y ¥ Q(L)

{y̌ À
1 (y)} < e

b(k(M)+d)
- d > 0

Proof. Let a0 :=eb(c0/2).
Let Qi :=Q(i) be the square of side-length 2i+1 centered in x and let

“Qi :=Qi0Qi−1. We denote by Ci the set of the four corners of Qi. In order
to estimate the growth time of Qi we split “Qi into suitable intervals Ahi
(horizontal or vertical).

An efficient way to fill a shell “Qi larger than a0 is to divide it into
intervals Ahi of length of order a0 and wait until a first site is occupied by a
non-minus in each of them. All other sites can be subsequently occupied at
rate 1.

Let ni :=4 N
2i
a0
M. We take the N side of “Qi with the NE corner but

without the NW one and split this set into ni/4 intervals Ahi : if 2i > a0 we
take the first ni/4−1 intervals of length to and the last interval with length
between to and 2a0−1; we continue clockwise by sequentially partitioning
the other sides without the previously considered corners (see Fig. 11) with
the same criterion; similarly, if 2i [ a0, then ni=4. In this case Ahi can be
seen as one of the four sides of Qi (without some of the corners in Ci).

Let us set Âhi :=A
h
i 0Ci.

Fig. 13. Shell construction.
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The proof is now reduced to the deterministic computation of the time
needed to À-infect L0. Since the time needed to À-infect the i-TH shell is
bounded by

max
h [ 4ni

1 | Ahi | eb(d/2)+
1

minh [ 4ni | A
h
i |
eb(c0+(d/2))2 (7.17)

the time needed to À-infect L(L) can be bounded by

C
L

i=1

1max
h [ 4ni

| Ahi | e
b(d/2)+

1
minh [ 4ni | A

h
i |
eb(c0+(d/2))2 (7.18)

[ Ceb(d/2) 1La0+ebc0 ln a0+
L
a0
ebc02 (7.19)

[ eb(M+(c0/2)+d) L (7.20)

8. PROOF OF PROPOSITION 3.1) CASE c)

Case c) of Proposition 1 is a corollary of the Theorem in [DSch2].
Indeed, by restricting the dynamics to the configurations in {0, 1}Z

2
,

the system is reduced to the dynamic Ising model I+ with magnetic field
h+l.

On the other hand, by using the first inequality in (2.14), it is easy to
see that the hitting time to a configuration having the origin +infected is
not larger than the one we get starting from 0 and preventing transitions
from 0 to −1.

9. PROOF OF PROPOSITION 3.1) CASE d)

In this Section T :=ebk with k > k+. For simplicity we take k < C+,
being the case k \ C+ a trivial consequence of the finite-volume results in
[CiO].

Let c :=max {c0, c+}=2−h+ | l | .
Note that, while in the region l < 0, kg=k+, in the region l < 0 a

mixed effect shows up and the relaxation time y À+ depends on the nuclea-
tion rate of the pluses as well as on the growth rate of the zeroes.

The proof of Proposition 1) case d) is analogous to the one of case b).
Yet in this case, since the growth of pluses in the sea of minuses involves
the zeroes (the direct interface is too expensive), the growth speed of a plus
droplet is eb(c/2).
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The strategy of the proof is the following:
By Lemma 7.5, we know that, with overwhelming probability, within

a time eb(k++d) after y À , there is a À-infected square of side-length
eb(k+−(c0/2)) centered in the origin. In Lemmata 9.3, 9.4 and 9.5, we show
that the spreading of the+infection into the À-infected sites takes place at
the same rates we would have if −1 is not allowed (hence with spreading
speed e−b(c+/2)).

We will then use Lemma 9.6 to conclude the proof of Proposition 1.

Remark . From Lemmata 7.2, 7.3, 7.4 and 7.5, it easily follows that

P(,x ¥ Q(Neb(kg−(c0/2))M) such that y̌ À
1 (x) > y À+T)Q 0 (9.1)

Lemma 9.1. Let us consider sgQ+x; t with the initial condition g

having no minuses. Then - d > 0

Pg(y̌
+
1 (x) < T | E) \ e

−b(C+−k+d) (9.2)

Proof. Let g+ be the ground configuration in Q+x with minus
boundary conditions, namely the configuration having Q(D−1)+x full of
pluses and Q0Q(D−1)+x full of zeroes.

We use the fact that the ground configuration of the largest cycle con-
taining g and not g+ cannot contain minuses.

On the other hand, from the analysis of the basins of attraction of the
minima in Lemma 6.1, the saddle S(0, g+) does not contain any minus.
Hence the energy barrier to overcome in order to reach g+ is the same as in
the Ising-like system I+ (see (2.16)), namely C+.

The same reasoning can be applied to every cycle compatible with E.
In this way we estimate the largest inner resistance of the largest cycle con-
taining 0 and not g+ as G* < c+.

The proof is the same as the one of Lemma 7.1. L

Again, it is easy to show (see [OS]) that in finite volume the nuclea-
tion time and the infection time have the same asymptotic behavior:

P(y̌+1 (x) < T+y̌ À
1 (x)) \ e

−b(C À −k+d) (9.3)

The finite volume result of Lemma 9.1 is delocalized in the following
Lemma, whose proof is identical to the one of Lemma 7.1.

Lemma 9.2. Let g be such that for all sites x in L+(ebk
+
) the

number of minuses in Q+x is at most D/3.
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Then,

Pg(min
x ¥ L+

y̌+1 (x) < T)Q 1 (9.4)

The following key Lemma states the irreversibility of+infection process.

Lemma 9.3. Let g be such that for all sites x in L+, the number of
minuses in Q+x is at most D/3.

Let EŒ :={minx ¥ L0(ŷ
+
1 (x)) > T}. Then,

P(EŒ 5 E)Q 1 (9.5)

Proof. The proof is the same as in Lemma 7.2.
We use the fact that even with minus boundary conditions on Q+x,

the +infected configurations have finite probability of reaching g+ within
time 1.

In this case the energy argument of the proof of Lemma 14 in
[DSch2] would work too. L

The following Lemmata 9.4 and 9.5 give estimates on the spreading
speed of the +infection to be used in Lemma 9.6. The proofs are the same
as that of Lemmata 7.3 and 7.4 once we observe that in every considered
configuration there exists a downhill path substituting the minuses with
zeroes and leading once more to the Ising-like case.

Lemma 9.4. Let

z −2(x) :=y̌+1 (x)−min {t : ,y, yŒ with y ] yŒ;

||x−y||=||x−yŒ||=1 and y̌+1 (y) [ t, y̌
+
1 (yŒ) [ t} (9.6)

be the time needed to +infect the site x, once it has two +infected neigh-
bors.

Let

E −2 :={-x ¥ L+z −2(x) < e
2b d} (9.7)

Then, - d > 0, for large b,

P(E −2 5 EŒ) \ 1−e−e
b d

(9.8)

Lemma 9.5. Let us consider the sub-lattice ZŒ2 :=(3DZ)2 of side-
length 3D.
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Let A :={Ai}i be a partition of L+5 ZŒ2 into sets Ai.
Let

z −1 :=min
x ¥ Ai
(y̌+1 (x)− min

y : ||x−y |=1
y̌+1 (y)) (9.9)

E −1(i) :=3-iz −1(i) <
eb(c++2d)

| Ai |
4 (9.10)

Then, - d > 0, for large b,

P(E −1 5 EŒ 5 E) \ 1−e−e
b d

(9.11)

We can now use the shell construction of [MO] to prove Lemma 9.6 and
then conclude the proof of Proposition 1 case d).

Lemma 9.6. LetM> c+2 , L :=NebMM and k(M) :=M+c+2 ;
Let us consider an initial configuration where for all x in L+, the

number of minuses in Q+x is at most D/3 and Q(D−1) is full of pluses.
Then -kŒ > k(M)

max
x ¥ Q(L)

{y̌+1 (x)} < e
bkŒ (9.12)

The proof is the same as the one of Lemma 7.5.

10. PROOF OF THEOREM 2)

To prove Theorem 2 we will use the following

Lemma 10.1. Let Ra, b be a rectangle with sides not larger than NebaM
and NebbM with 0 < b [ a [ k0−

c0
2 and let Wa, b be the set of all configurations

having a *-cluster C of À-infected sites touching the four sides of Ra, b. We
call IgÀ (t) the set of À-infected sites for sg

L
0; t.

Let

ygR :=min {t : Ra, b … I
g
À (t)} (10.1)

Then, - d > 0

E 5 E2 … {y
g
R < e

b(a+d)} (10.2)

(see (7.7) and definition before (7.4)).
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Fig. 14. The time needed to fill SE region in the left is bounded by the time needed to fill
the region in the right.

Proof. Let LN, LE, LS, LW be the North, East, South and West side
of the inner boundary of Ra, b, respectively and let be Pa ¥ C 5 La with
a ¥ {N, E, S, W}.
PE and PW are *-connected by a curve (e.g. a piece of the outer

boundary of C) and so are PN and PS. Let wEW and wNS be such two curves.
Let SE denote the region lying South of wEW and East of wNS. We define,
using these two curves, SW, NW and NE in a similar way.

Let

ygSE :=inf {t : SE … IgÀ (t)} (10.3)

WSE :={r : Ra, b0SE … IrÀ (0)} (10.4)

Let r̄ be the configuration with I r̄À (0)=LN 2 LW (see Fig. 14).
In E and because of the finite range of the dynamics, -r ¥ WSE

ygSE [ yrSE (10.5)

and, by using the first inequality in (2.14)

yrSE [ y r̄SE (10.6)

Starting from r̄ we fill Ra, b ‘‘diagonally’’: given i ¥ Z, we consider sets
of the form

Ai :={x ¥ Z2 : x2=x1+i} 5 Ra, b (10.7)
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Fig. 15. Diagonal growth.

Let iŒ and i' be the smallest and the largest i, respectively, such that Ai is
non-empty (i' [ iŒ+NebaM−1).

If Ai−1 is entirely À-infected, all sites of Ai have two À-infected
neighbors and can be À-infected at rate 1. Thus, taking the sum over
i of the time needed to À-infect Ai, corresponds to À-infect Ra, b by
À-infecting the Ai consecutively (see Fig. 15).

Similar constructions can be given for the other parts, so that by using
the definition of E2,

ygR [ 4 C
i'

i=iŒ
eb d [ eb(a+d) L (10.8)

Proof of Theorem 2. Let E* be the event {min{ȳL
0

> D, y
L
0

LECE} < T}
(we recall that T=ebk with k+ < k < k0). By Lemma 6.7,

P−1(E*)Q 1 (10.9)

On the other hand, if the process starting from −1 does not contain any
cluster wider than D for any time s < T, by using an argument like the one
in Lemma 6.5 it is easy to show that -s < T, sg

0

L
0; s contains at most one

space- time cluster whose section is larger than D.
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We can use the same methods as in the proof of Proposition 1 a) and
bound the growth speed of the section at time s of C À

0, 0(s
g
0

L
0; s, s) as

v < e−b((c0/2)−d) (10.10)

where d is arbitrarily small.
By Lemma 7.2, we get that with probability tending to one, À-

infected sites will not disinfect within T. In particular this entails that the
set of À-infected sites is connected.

By using Lemmata 6.1, 7.3 and 7.4, we can bound from below the
speed of growth of this droplet as

v > e−b(c0+d) (10.11)

if the side-length of the droplet is smaller than eb(c0/2) or

v > e−b((c0/2)+d) (10.12)

if the side-length of the droplet is larger than eb(c0/2.
Let us consider the process at times tŒ < t' < t'Œ, defined to be tŒ :=

T−eb(k−r), t'=tŒ+c1eb(k−(c0/2)+e), t'Œ :=t'+c2eb(k++e)=tŒ+c1eb(k−(c0/2)+e)+
c2eb(k++e). We will show that, with large probability, R À

ext(tŒ) is À-infected
within the time t' and is +infected within the time t'Œ. Then we will show
that t'Œ < T for suitable e and large b.

By basic estimates on the speed of growth (see proof of Proposition 1)
,c3, c4 > 0 such that

P(diam(R À
ext(tŒ)) \ c3e

b(k−(c0/2)) | E 5 E1 5 E2)Q 1 (10.13)

and

P(diam(R À
ext(T))−diam(R À

ext(tŒ)) [ c4e
b(k−(c0/2)−r) | E*)Q 1 (10.14)

By using Lemmata 7.2, 7.3 and 10.1, we can show that -e > 0, we have
at time t'

P(-x ¥ R À
ext(tŒ), y̌

À
1 (x) [ t

')Q 1 (10.15)

We now tile R À
ext(tŒ) with squares of side eb(k+−(c+/2)). The tiles are less

than e2bk. Using the same argument as in the proof of Proposition 1
case d), we can show that ,c5, c6 > 0 such that -e > 0, looking at the
process at time t'Œ, we have:

P(,x ¥ R À
ext(tŒ) : y̌

+
1 (x) [ t

'
Œ) [ c5e2bke−c6e

be

Q 0 (10.16)

By choosing e=r̂− r
2 such that t'Œ < T, Theorem 2 is proven. L
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